A DEEPER LOOK 4 The energy of the bonding molecular orbital of H₂⁺

The goal is to calculate the energy of the σ orbital of the hydrogen molecule-ion, written as the linear combination $\psi_{+} = N_{+}(\psi_{A} + \psi_{B})$. In general, the energy is the expectation value of the hamiltonian operator. Therefore, the energy E_{+} of ψ_{+} is

$$E_{+} = \int \psi_{+}^{*} \hat{H} \psi_{+} \mathrm{d}\tau$$

with the hamiltonian given by eqn 9B.1 and $N_+ = 1/\{2(1+S)\}^{1/2}$. Begin by writing a general expression for E_+ , and then refine it by recognizing that ψ_A and ψ_B are H1s atomic orbitals.

Step 1 *Write a general expression for the expectation value* Begin by using eqn 9B.1 to write

$$\hat{H}\psi_{+} = \left\{-\frac{\hbar^{2}}{2m_{\rm e}}\nabla_{1}^{2} - j_{0}\left(\frac{1}{r_{\rm A1}} + \frac{1}{r_{\rm B1}} - \frac{1}{R}\right)\right\}\psi_{+}$$
$$= \left\{-\frac{\hbar^{2}}{2m_{\rm e}}\nabla_{1}^{2} - \frac{j_{0}}{r_{\rm A1}} - \frac{j_{0}}{r_{\rm B1}}\right\}\psi_{+} + \frac{j_{0}}{R}\psi_{+}$$

where $j_0 = e^2/4\pi\varepsilon_0$. Because the wavefunction is real, the expectation value of the hamiltonian is

$$E_{+} = \int \psi_{+} \hat{H} \psi_{+} d\tau$$
Evaluated in step 2
$$= \int \psi_{+} \left\{ -\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \frac{j_{0}}{r_{A1}} - \frac{j_{0}}{r_{B1}} \right\} \psi_{+} d\tau + \int \psi_{+} \left(\frac{j_{0}}{R} \right) \psi_{+} d\tau$$

Step 2 Evaluate the first term

With $\psi_+ = N_+(\psi_A + \psi_B)$, and after some algebra, the first term in the expression from Step 1 expands to

$$\int \Psi_{+} \left\{ -\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \frac{j_{0}}{r_{A1}} - \frac{j_{0}}{r_{B1}} \right\} \Psi_{+} d\tau$$

$$= N_{+}^{2} \int (\Psi_{A} + \Psi_{B}) \left\{ -\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \frac{j_{0}}{r_{A1}} - \frac{j_{0}}{r_{B1}} \right\} (\Psi_{A} + \Psi_{B}) d\tau$$

$$= N_{+}^{2} \left\{ \underbrace{\int \Psi_{A} \left\{ -\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \frac{j_{0}}{r_{A1}} \right\} \Psi_{A} d\tau}_{F_{B1}} - \underbrace{\int \Psi_{A}^{2} d\tau}_{F_{B1}} d\tau$$

$$+ \underbrace{\int \psi_{\mathrm{A}} \left\{ -\frac{\hbar^2}{2m_{\mathrm{e}}} \nabla_{\mathrm{I}}^2 - \frac{j_0}{r_{\mathrm{BI}}} \right\} \psi_{\mathrm{B}} \mathrm{d}\tau}_{j_0} \underbrace{\int \frac{\psi_{\mathrm{A}} \psi_{\mathrm{B}}}{r_{\mathrm{AI}}} \mathrm{d}\tau}_{r_{\mathrm{AI}}}$$

$$+ \underbrace{\int \psi_{\rm B} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_{\rm I}^2 - \frac{j_0}{r_{\rm A1}} \right\} \psi_{\rm A} d\tau}_{+ \int \psi_{\rm B} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_{\rm I}^2 - \frac{j_0}{r_{\rm B1}} \right\} \psi_{\rm B} d\tau} \underbrace{\frac{k}{j_0 \int \frac{\psi_{\rm B} \psi_{\rm A}}{r_{\rm B1}} d\tau}}_{+ \int \psi_{\rm B} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_{\rm I}^2 - \frac{j_0}{r_{\rm B1}} \right\} \psi_{\rm B} d\tau} - \underbrace{j_0 \int \frac{\psi_{\rm B}}{r_{\rm A1}} d\tau}_{j_0 \int \frac{\psi_{\rm B}}{r_{\rm A1}} d\tau}$$

To see how the integrals give rise to the quantities in red, consider the following:

• The terms $-(\hbar^2/2m_e)\nabla_1^2 - j_0/r_{A1}$ and $-(\hbar^2/2m_e)\nabla_1^2 - j_0/r_{B1}$ have the form of the hamiltonian of a hydrogen atom (Topic 8A). Because in this case ψ_A and ψ_B are H1s orbitals centred on A and B, respectively, it follows that

$$\int \psi_{\rm A} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_1^2 - \frac{j_0}{r_{\rm A1}} \right\} \psi_{\rm A} \, \mathrm{d}\tau = E_{\rm 1s} \int \psi_{\rm A}^2 \mathrm{d}\tau = E_{\rm 1s}$$

$$\int \psi_{\rm B} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_{\rm l}^2 - \frac{j_0}{r_{\rm Bl}} \right\} \psi_{\rm B} \, \mathrm{d}\tau = E_{\rm ls} \int \psi_{\rm B}^2 \mathrm{d}\tau = E_{\rm ls}$$

$$\int \psi_{\rm A} \underbrace{\left\{-\frac{\hbar^2}{2m_{\rm e}}\nabla_{\rm I}^2 - \frac{j_0}{r_{\rm BI}}\right\}\psi_{\rm B}}_{\xi} d\tau = E_{\rm Is} \underbrace{\int \psi_{\rm A}\psi_{\rm B} d\tau}_{\xi}$$

$$\int \psi_{\rm B} \left\{ -\frac{\hbar^2}{2m_{\rm e}} \nabla_{\rm I}^2 - \frac{j_0}{r_{\rm AI}} \right\} \psi_{\rm A} \, \mathrm{d}\tau = E_{\rm Is} \int \psi_{\rm B} \psi_{\rm A} \, \mathrm{d}\tau$$

where E_{1s} is the energy of the H1s orbital, and S is the overlap integral.

• Because the atoms are identical

$$j_0 \int \frac{\psi_A^2}{r_{B1}} d\tau = j_0 \int \frac{\psi_B^2}{r_{A1}} d\tau = j \text{ and}$$
$$j_0 \int \frac{\psi_A \psi_B}{r_{A1}} d\tau = j_0 \int \frac{\psi_B \psi_A}{r_{B1}} d\tau = k$$

Therefore, in terms of the parameters E_{1s} , S, j, and k, the first term simplifies to

$$\int \psi_{+} \left\{ -\frac{\hbar^{2}}{2m_{e}} \nabla_{1}^{2} - \frac{j_{0}}{r_{A1}} - \frac{j_{0}}{r_{B1}} \right\} \psi_{+} d\tau = 2N_{+}^{2} \{ E_{1s}(1+S) - (j+k) \}$$

Step 3 Evaluate the second term

The second term in the expression from Step 1 is the contribution to the energy from the repulsion between nuclei. Because j_0/R is a constant and the wavefunction is normalized, that term simplifies to

$$\int \psi_{+} \left(\frac{j_0}{R} \right) \psi_{+} \mathrm{d}\tau = \frac{j_0}{R} \int \psi_{+}^2 \mathrm{d}\tau = \frac{j_0}{R}$$

Step 4 *Combine the expressions from Steps 2 and 3*

Because H1s orbitals were used to arrive at the result in Step 2, write $E_+ = E_{\sigma}$, the energy of the σ molecular orbital and

$$E_{\sigma} = 2N_{+}^{2} \{E_{1s}(1+S) - (j+k)\} + \frac{\overline{j_{0}}}{R}$$

With $N_{+} = 1/\{2(1 + S)\}^{1/2}$, it follows that

$$E_{\sigma} = \frac{\frac{2N_{+}^{2}}{1}}{(1+S)} \{E_{1s}(1+S) - (j+k)\} + \frac{j_{0}}{R} = E_{1s} - \frac{j+k}{1+S} + \frac{j_{0}}{R}$$

as in eqn 9B.4.