A DEEPER LOOK 4 The energy of the bonding molecular orbital of H_{2}^{+}

The goal is to calculate the energy of the σ orbital of the hydrogen molecule-ion, written as the linear combination $\psi_{+}=N_{+}\left(\psi_{\mathrm{A}}+\psi_{\mathrm{B}}\right)$. In general, the energy is the expectation value of the hamiltonian operator. Therefore, the energy E_{+}of ψ_{+}is

$$
E_{+}=\int \psi_{+}^{\star} \hat{H} \psi_{+} \mathrm{d} \tau
$$

with the hamiltonian given by eqn 9 B. 1 and $N_{+}=$ $1 /\{2(1+S)\}^{1 / 2}$. Begin by writing a general expression for E_{+}, and then refine it by recognizing that ψ_{A} and ψ_{B} are H1s atomic orbitals.

Step 1 Write a general expression for the expectation value Begin by using eqn 9B. 1 to write

$$
\begin{aligned}
\hat{H} \psi_{+} & =\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-j_{0}\left(\frac{1}{r_{\mathrm{A} 1}}+\frac{1}{r_{\mathrm{B} 1}}-\frac{1}{R}\right)\right\} \psi_{+} \\
& =\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{+}+\frac{j_{0}}{R} \psi_{+}
\end{aligned}
$$

where $j_{0}=e^{2} / 4 \pi \varepsilon_{0}$. Because the wavefunction is real, the expectation value of the hamiltonian is

$$
\begin{aligned}
E_{+} & =\int \psi_{+} \hat{H} \psi_{+} \mathrm{d} \tau \\
& =\overbrace{\int \psi_{+}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{+} \mathrm{d} \tau}^{\text {Evaluated in step } \tau}+\overbrace{\int \psi_{+}\left(\frac{j_{0}}{R}\right) \psi_{+} \mathrm{d} \tau}^{\text {Evaluated in step 3 }}
\end{aligned}
$$

Step 2 Evaluate the first term
With $\psi_{+}=N_{+}\left(\psi_{\mathrm{A}}+\psi_{\mathrm{B}}\right)$, and after some algebra, the first term in the expression from Step 1 expands to

$$
\begin{aligned}
\int \psi_{+} & \left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{+} \mathrm{d} \tau \\
= & N_{+}^{2} \int\left(\psi_{\mathrm{A}}+\psi_{\mathrm{B}}\right)\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\}\left(\psi_{\mathrm{A}}+\psi_{\mathrm{B}}\right) \mathrm{d} \tau \\
= & N_{+}^{2}(\overbrace{\int \psi_{\mathrm{A}}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}\right\} \psi_{\mathrm{A}} \mathrm{~d} \tau-j_{0} \int \frac{\psi_{\mathrm{A}}^{2}}{r_{\mathrm{B} 1}} \mathrm{~d} \tau}^{E_{\mathrm{B}}} \\
& +\overbrace{\int \psi_{\mathrm{A}}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{\mathrm{B}} \mathrm{~d} \tau-\overbrace{j_{0} \int \frac{\psi_{\mathrm{A}} \psi_{\mathrm{B}}}{r_{\mathrm{A} 1}} \mathrm{~d} \tau}^{E_{1} \mathrm{~S}}}^{\mathrm{k}}
\end{aligned}
$$

$$
\begin{aligned}
& +\overbrace{\int \psi_{\mathrm{B}}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}\right\} \psi_{\mathrm{A}} \mathrm{~d} \tau}^{\mathrm{E}_{\mathrm{S}} \mathrm{~S}}-\overbrace{j_{0} \int \frac{\psi_{\mathrm{B}} \psi_{\mathrm{A}}}{r_{\mathrm{B} 1}} \mathrm{~d} \tau}^{k} \\
& +\overbrace{\int \psi_{\mathrm{B}}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{\mathrm{B}} \mathrm{~d} \tau}^{E_{\mathrm{B}}}-\overbrace{\left.j_{0} \int \frac{\psi_{\mathrm{B}}^{2}}{r_{\mathrm{A} 1}} \mathrm{~d} \tau\right\}}^{j}
\end{aligned}
$$

To see how the integrals give rise to the quantities in red, consider the following:

- The terms $-\left(\hbar^{2} / 2 m_{\mathrm{e}}\right) \nabla_{1}^{2}-j_{0} / r_{\mathrm{A} 1}$ and $-\left(\hbar^{2} / 2 m_{\mathrm{e}}\right) \nabla_{1}^{2}$ $-j_{0} / r_{\mathrm{Bl}}$ have the form of the hamiltonian of a hydrogen atom (Topic 8A). Because in this case ψ_{A} and ψ_{B} are H1s orbitals centred on A and B, respectively, it follows that
$\int \psi_{\mathrm{A}} \overbrace{\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}\right\} \psi_{\mathrm{A}}}^{E_{15} \psi_{\mathrm{A}}} \mathrm{d} \tau=E_{1 \mathrm{~s}} \overbrace{\int \psi_{\mathrm{A}}^{2} \mathrm{~d} \tau}^{1}=E_{1 \mathrm{~s}}$
$\int \psi_{\mathrm{B}} \overbrace{\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{\mathrm{B}}}^{E_{1} \psi_{\mathrm{B}}} \mathrm{d} \tau=E_{1 \mathrm{~s}} \overbrace{\int \psi_{\mathrm{B}}^{2} \mathrm{~d} \tau}^{1}=E_{1 \mathrm{~s}}$
$\int \psi_{\mathrm{A}} \overbrace{\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{B}}}\right\}}^{\mathrm{E}_{1} \psi_{\mathrm{B}}} \psi_{\mathrm{B}} \mathrm{d} \tau=E_{1 \mathrm{~s}} \overbrace{\int \psi_{\mathrm{A}} \psi_{\mathrm{B}} \mathrm{d} \tau}^{S}$
$\int \psi_{\mathrm{B}} \overbrace{\left.-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}\right\} \psi_{\mathrm{A}}}^{E_{15} \psi_{\mathrm{A}}} \mathrm{d} \tau=E_{1 \mathrm{~s}} \overbrace{\int \psi_{\mathrm{B}} \psi_{\mathrm{A}} \mathrm{d} \tau}^{S}$
where $E_{1 \mathrm{~s}}$ is the energy of the H1s orbital, and S is the overlap integral.
- Because the atoms are identical
$j_{0} \int \frac{\psi_{\mathrm{A}}^{2}}{r_{\mathrm{B} 1}} \mathrm{~d} \tau=j_{0} \int \frac{\psi_{\mathrm{B}}^{2}}{r_{\mathrm{A} 1}} \mathrm{~d} \tau=j$ and
$j_{0} \int \frac{\psi_{\mathrm{A}} \psi_{\mathrm{B}}}{r_{\mathrm{A} 1}} \mathrm{~d} \tau=j_{0} \int \frac{\psi_{\mathrm{B}} \psi_{\mathrm{A}}}{r_{\mathrm{B} 1}} \mathrm{~d} \tau=k$

Therefore, in terms of the parameters $E_{1 s}, S, j$, and k, the first term simplifies to

$$
\int \psi_{+}\left\{-\frac{\hbar^{2}}{2 m_{\mathrm{e}}} \nabla_{1}^{2}-\frac{j_{0}}{r_{\mathrm{A} 1}}-\frac{j_{0}}{r_{\mathrm{B} 1}}\right\} \psi_{+} \mathrm{d} \tau=2 N_{+}^{2}\left\{E_{1 \mathrm{~s}}(1+S)-(j+k)\right\}
$$

Step 3 Evaluate the second term
The second term in the expression from Step 1 is the contribution to the energy from the repulsion between nuclei. Because j_{0} / R is a constant and the wavefunction is normalized, that term simplifies to

$$
\int \psi_{+}\left(\frac{j_{0}}{R}\right) \psi_{+} \mathrm{d} \tau=\frac{j_{0}}{R} \overbrace{\int \psi_{+}^{2} \mathrm{~d} \tau}^{1}=\frac{j_{0}}{R}
$$

Step 4 Combine the expressions from Steps 2 and 3
Because H1s orbitals were used to arrive at the result in Step 2, write $E_{+}=E_{\sigma}$, the energy of the σ molecular orbital and

$$
E_{\sigma}=\overbrace{2 N_{+}^{2}\left\{E_{15}(1+S)-(j+k)\right\}}^{\text {From Step 2 }}+\overbrace{\frac{j_{0}}{R}}^{\text {From Step 3 }}
$$

With $N_{+}=1 /\{2(1+S)\}^{1 / 2}$, it follows that

$$
E_{\sigma}=\frac{\overbrace{\frac{1}{(1+S)}}^{2 N_{+}^{2}}\left\{E_{1 s}(1+S)-(j+k)\right\}+\frac{j_{0}}{R}=E_{1 s}-\frac{j+k}{1+S}+\frac{j_{0}}{R} .{ }^{2}}{}
$$

as in eqn 9B.4.

