
A deeper look 7  The van der Waals equation 
of state

In this section, the connection is traced between the van 
der Waals equation and the parameters defining the shal-
low, hard-centred potential energy shown in Figure 1. It 
is assumed that the potential is isotropic and that the N 
molecules are confined in a spherical container of radius 
R3. The attractive region is shallow in the sense βε << 1.

Four key equations need to be assembled:

The canonical partition function:
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The Helmholtz energy:
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The statistical pressure:
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Step 1 Identify the van der Waals parameters
The first combination to note (with β = 1/kT, and recogniz-
ing that Λ is independent of volume) is
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The outcome of eqn 5 is then compared with the van der 
Waals equation
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However, the calculation will be confined to pairwise 
interactions, which implies that when eqn 6 is expressed 
as a virial equation of state, the comparison must be made 
with the second virial coefficient (B) in
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because that coefficient arises from pairwise interactions. 
When eqn 6 is expanded it becomes
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which implies that
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Step 2 Simplify the configuration integral for weak  pairwise 
interactions
Now consider the configuration integral, with
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for the potential energy of particle 1. 
That the potential energy is positively infinite for r12 < 

R1 implies that all the volume integrations must be outside 
that region: that constraint will be indicated by a prime on 
the integral sign. Next note that
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Step 3 Analyse the ‘perfect’ contribution
The ‘perfect’ term (Z°) is so-called because it results in the 
perfect gas law:
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Figure 1 A shallow, hard-centred potential energy function.
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Step 4 Evaluate the contribution of the interaction integral
Now consider the second contribution to the configura-
tion integral:
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Step 5 Evaluate the integral 
Bear in mind that the integration excludes the regions 
occupied by the hard core of each molecule. If each mol-
ecule of radius 12 R1 occupies a volume vmolecule, the volume 
excluded by each one is R(4 /3) 41
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that region is avoided and the attractive interaction is 
weak (and equal to −ε up to r12 = R2, and zero thereafter),
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where vrange is the volume spanned by the attractive zone 
of the potential energy (Fig. 2). 

Step 6 Evaluate the ‘imperfect’ contribution to the  pressure
At this point
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Provided N N V(4 )/ <<1mol rangeβε−v v ,
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and the contribution to the pressure is
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Step 7 Identify the second virial coefficient
The total pressure, p = p°�+ p′, is
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It follows that
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It now follows from the thermodynamic equation of state
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as claimed in the text.
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Figure 2 A representation of the volume spanned by the 
attractive zone of the potential energy function shown in 
Fig. 1.
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