A DEEPER LOOK 7 The van der Waals equation of state

In this section, the connection is traced between the van der Waals equation and the parameters defining the shallow, hard-centred potential energy shown in Figure 1. It is assumed that the potential is isotropic and that the N molecules are confined in a spherical container of radius R_{3}. The attractive region is shallow in the sense $\beta \varepsilon \ll 1$.

Four key equations need to be assembled:
The canonical partition function:

$$
\begin{equation*}
Q=\frac{Z}{\Lambda^{3 N}}, \quad \Lambda=\frac{h}{(2 \pi m / \beta)^{1 / 2}} \tag{1}
\end{equation*}
$$

The configuration integral:

$$
\begin{equation*}
Z=\frac{1}{N!} \int \mathrm{e}^{-\beta E_{\mathrm{p}}} \mathrm{~d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N} \tag{2}
\end{equation*}
$$

The Helmholtz energy:

$$
\begin{equation*}
A=-k T \ln Q \tag{3}
\end{equation*}
$$

The statistical pressure:

$$
\begin{equation*}
p=-\left(\frac{\partial A}{\partial V}\right)_{T} \tag{4}
\end{equation*}
$$

Step 1 Identify the van der Waals parameters

The first combination to note (with $\beta=1 / k T$, and recognizing that Λ is independent of volume) is

$$
\begin{equation*}
p=\frac{1}{\beta}\left(\frac{\partial \ln Q}{\partial V}\right)_{T}=\frac{1}{\beta}\left(\frac{\partial \ln z}{\partial V}\right)_{T} \tag{5}
\end{equation*}
$$

The outcome of eqn 5 is then compared with the van der Waals equation

$$
\begin{equation*}
p=\frac{n R T}{V-n b}-a \frac{n^{2}}{V^{2}} \tag{6}
\end{equation*}
$$

However, the calculation will be confined to pairwise interactions, which implies that when eqn 6 is expressed as a virial equation of state, the comparison must be made with the second virial coefficient (B) in

$$
p=\frac{n R T}{V}\left\{1+\frac{n B}{V}+\cdots\right\}
$$

because that coefficient arises from pairwise interactions. When eqn 6 is expanded it becomes

$$
\begin{aligned}
p & =\frac{n R T}{V(1-n b / V)}-a \frac{n^{2}}{V^{2}}=\frac{n R T}{V}\left\{1+\frac{n b}{V}+\cdots\right\}-a \frac{n^{2}}{V^{2}} \\
& =\frac{n R T}{V}\left\{1+\frac{n b}{V}+\cdots-a \frac{n}{R T V}\right\}=\frac{n R T}{V}\left\{1+\left(b-\frac{a}{R T}\right) \frac{n}{V}+\cdots\right\}
\end{aligned}
$$

Figure 1 A shallow, hard-centred potential energy function.
which implies that

$$
\begin{equation*}
B=b-\frac{a}{R T} \tag{7}
\end{equation*}
$$

Step 2 Simplify the configuration integral for weak pairwise interactions
Now consider the configuration integral, with

$$
\begin{equation*}
E_{\mathrm{p}}=\sum_{i=2}^{N} E_{1, i} \tag{8}
\end{equation*}
$$

for the potential energy of particle 1.
That the potential energy is positively infinite for $r_{12}<$ R_{1} implies that all the volume integrations must be outside that region: that constraint will be indicated by a prime on the integral sign. Next note that

$$
Z=\frac{V^{N}}{N!} \times \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-\beta E_{\mathrm{p}}} \mathrm{~d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N}
$$

and therefore that

$$
\begin{aligned}
\ln Z & =\ln \frac{\overbrace{V^{N}}^{N!}}{Z^{\circ}}+\ln \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-\beta E_{\mathrm{p}}} \mathrm{~d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N} \\
& =\ln Z^{\circ}+\ln \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-\beta E_{\mathrm{p}}} \mathrm{~d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N}
\end{aligned}
$$

Step 3 Analyse the 'perfect' contribution

The 'perfect' term $\left(Z^{\circ}\right)$ is so-called because it results in the perfect gas law:

$$
\begin{aligned}
p^{\circ} & =\frac{1}{\beta}\left(\frac{\partial \ln z^{\circ}}{\partial V}\right)_{T}=\frac{1}{\beta Z^{\circ}}\left(\frac{\partial Z^{\circ}}{\partial V}\right)_{T} \\
& =\frac{1}{\beta\left(V^{N} / N!\right)} \frac{N V^{N-1}}{N!}=\frac{N}{\beta V}=\frac{N k T}{V}=\frac{n R T}{V}
\end{aligned}
$$

Step 4 Evaluate the contribution of the interaction integral Now consider the second contribution to the configuration integral:

$$
\begin{aligned}
& \ln Z^{\prime}=\ln \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-\beta E_{\mathrm{P}}} \mathrm{~d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N} \\
& =\ln \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-\beta\left(E_{E_{12}}+E_{1_{13}}+\cdots E_{1 N}\right)} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \cdots \mathrm{~d} \tau_{N} \\
& =\ln \frac{1}{V^{N}} \int^{\prime} \mathrm{e}^{-N \beta E_{12}} \mathrm{~d} \tau_{1} \int^{\prime} \mathrm{e}^{-N \beta E_{13}} \mathrm{~d} \tau_{2} \cdots \int^{\prime} \mathrm{e}^{-N \beta E_{1 N}} \mathrm{~d} \tau_{N} \\
& =\ln \frac{1}{V^{N}}\left(\int^{\prime} \mathrm{e}^{-N \beta E_{12}} \mathrm{~d} \tau_{1}\right)^{N-1} \approx \ln \frac{1}{V^{N}}\left(\int^{\prime} \mathrm{e}^{-N \beta E_{12}} \mathrm{~d} \tau_{1}\right)^{N} \\
& =N \ln \frac{1}{V} \int^{\prime} \mathrm{e}^{-N \beta E_{12}} \mathrm{~d} \tau_{1}
\end{aligned}
$$

Step 5 Evaluate the integral

Bear in mind that the integration excludes the regions occupied by the hard core of each molecule. If each molecule of radius $\frac{1}{2} R_{1}$ occupies a volume $v_{\text {molecule }}$, the volume excluded by each one is $\frac{1}{2}(4 \pi / 3) R_{1}^{3}=4 v_{\text {molecule }}$. Provided that region is avoided and the attractive interaction is weak (and equal to $-\varepsilon$ up to $r_{12}=R_{2}$, and zero thereafter),

$$
\begin{aligned}
\int^{\prime} \mathrm{e}^{-N \beta E_{12}} \mathrm{~d} \tau_{1} & =\int^{\prime}(1-N \beta \overbrace{E_{12}}^{-\varepsilon}) \overbrace{\mathrm{d} \tau_{1}}^{4 \pi r^{2} \mathrm{dr}} \\
& =\overbrace{V-4 N v_{\text {mol }}}^{\text {from the } 1}+\overbrace{\frac{4 \pi}{3} N \beta \varepsilon\left(R_{2}^{3}-R_{1}^{3}\right)}^{\text {from the - } N \beta E_{12}} \\
& =V-4 N v_{\text {mol }}+N \beta \varepsilon v_{\text {range }}
\end{aligned}
$$

where $v_{\text {range }}$ is the volume spanned by the attractive zone of the potential energy (Fig. 2).

Step 6 Evaluate the 'imperfect' contribution to the pressure At this point

$$
\ln Z^{\prime}=N \ln \left(1-\frac{4 N v_{\text {mol }}-N \beta \varepsilon v_{\text {range }}}{V}\right)
$$

Provided $\left(4 N v_{\text {mol }}-N \beta \varepsilon v_{\text {range }}\right) / V \ll 1$,

$$
\ln Z^{\prime}=-\frac{N}{V}\left(4 N v_{\text {mol }}-N \beta \varepsilon v_{\text {range }}\right)
$$

and the contribution to the pressure is

$$
p^{\prime}=\frac{N}{\beta V^{2}}\left(4 N v_{\text {mol }}-N \beta \varepsilon v_{\text {range }}\right)
$$

Step 7 Identify the second virial coefficient
The total pressure, $p=p^{\circ}+p^{\prime}$, is

$$
\begin{aligned}
p & =\frac{N}{\beta V}+\frac{N}{\beta V^{2}}\left(4 N v_{\text {mol }}-N \beta \varepsilon v_{\text {range }}\right) \\
& =\frac{N}{\beta V}\left\{1+\left(4 v_{\text {mol }}-\beta \varepsilon v_{\text {range }}\right) \frac{N}{V}\right\} \\
& =\frac{n N_{\mathrm{A}}}{\beta V}\left\{1+\left(4 v_{\text {mol }}-\beta \varepsilon v_{\text {range }}\right) \frac{n N_{\mathrm{A}}}{V}\right\}
\end{aligned}
$$

Figure 2 A representation of the volume spanned by the attractive zone of the potential energy function shown in Fig. 1.
and therefore

$$
p=\frac{n R T}{V}\left\{1+\left(4 N_{\mathrm{A}} v_{\mathrm{mol}}-\frac{\varepsilon N_{\mathrm{A}} v_{\text {range }}}{R T}\right) \frac{n}{V}\right\}
$$

It follows that

$$
b=4 N_{\mathrm{A}} v_{\mathrm{mol}} \quad a=N_{\mathrm{A}} \varepsilon v_{\text {range }}
$$

It now follows from the thermodynamic equation of state

$$
\pi_{T}=T\left(\frac{\partial p}{\partial T}\right)_{V}-p
$$

with $\pi_{T}=(\partial U / \partial V)_{T}$, and

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=\frac{n R}{V}\left\{1+\frac{4 N_{\mathrm{A}} v_{\mathrm{mol}} n}{V}\right\}
$$

that

$$
\begin{aligned}
\pi_{T}= & \frac{n R T}{V}\left\{1+\frac{4 N_{\mathrm{A}} v_{\text {mol }} n}{V}\right\} \\
& -\frac{n R T}{V}\left\{1+\left(4 N_{\mathrm{A}} v_{\text {mol }}-\frac{\varepsilon N_{\mathrm{A}} v_{\text {range }}}{R T}\right) \frac{n}{V}\right\} \\
= & \frac{n^{2} \varepsilon R T N_{\mathrm{A}} v_{\text {range }}}{R T V^{2}}=\frac{n^{2} \varepsilon N_{\mathrm{A}} v_{\text {range }}}{V^{2}}=\frac{n^{2} a}{V^{2}}
\end{aligned}
$$

as claimed in the text.

