
A DEEPER LOOK 8  The electric dipole–dipole 
interaction

An important problem in physical chemistry is the calcu-
lation of the potential energy of interaction between two 
point electric dipoles with moments µµ1 and µµ2, separated 
by a vector r. The starting point is an expression from clas-
sical electromagnetic theory for the potential energy of µµ2 
in the electric field 1EE  generated by µµ1:

V = −  1EE  . µµ2 (1)

In three dimensions, the strength of the electric field 
(a scalar quantity) can be expressed in terms of ϕ, the 
Coulomb potential due to the distribution of charges in 
the system, as

φ= −∇1EE   (2)

where the result of the operation ∇ on a function f(x,y,z) is 
a vector with x, y, and z components calculated by forming 
∂f/∂x, ∂f/∂y, and ∂f/∂z, respectively:
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The goal is then to write an expression for 1EE , and then 
take the dot (scalar) product of 1EE  with µµ2.

Step 1 Write an expression for the Coulomb potential
To calculate 1EE , consider a distribution of point charges Qi 
located at xi, yi, and zi from the origin (1). Let r be a vec-

tor pointing from the 
origin (0,0,0) to the 
location of the point of 
interest (x,y,z), and ri a 
vector pointing from 
the origin to the loca-
tions of the charges 
Qi, with coordinates 

(xi,yi,zi). It follows that the magnitude of r is r = (x2 + y2 + 
z2)1/2, that of ri is ri = (xi

2 + yi
2 + zi

2)1/2, and that the magnitude of 
the resultant r − ri is r x x y y z z{( ) ( ) ( ) }i i ires

2 2 2 1/2= − + − + − . 
The Coulomb  potential ϕ due to this distribution at a point 
with coordinates x, y, and z is:
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Step 2 Make approximations
If all the charges are close to the origin (in the sense that 
ri << r and r rres ≈ ), then a Taylor expansion (The chemist’s 
toolkit 12 in Topic 5B) can be used to write
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where the ellipses include the terms arising from deriva-
tives with respect to yi and zi and higher derivatives. 
Because of the approximations being made, the derivative 
in blue evaluates to
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It follows that
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If the charge distribution is electrically neutral, the first 
term disappears because ∑iQi = 0. Next note that, ∑iQixi = 
μx and likewise for the y- and z-components. That is, 
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The higher-order terms correspond to the higher multi-
poles of the charge distribution, and will be considered no 
further here.

Step 3 Write an expression for the electric field strength
It follows from eqns 2 and 5 that the electric field strength 
is
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To evaluate the derivative in this expression, first note that 
fg f g g f( )∇ = ∇ + ∇ , so 
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It follows that:
• The result of the operation r x y z( ) ( )x y z1µµ µ µ µ∇ ⋅ =∇ + +  

is a vector with components
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These are the components of the vector 1µµ , so r( )1 1µµ µµ∇ ⋅ = .

r1

r2

r3

r

r – r2

r – r1
r – r3

Q2

Q1

Q3 1



A DEEPER LOOK 8 ThE ELEcTRic DiPOLE–DiPOLE inTERAcTiOn2

• The result of the operation r x y z(1/ ) {( ) }3 2 2 2 3/2∇ =∇ + + −  
is a vector with components 
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That is, 
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The electric field strength is therefore
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Step 4 Write an expression for the potential energy of 
interaction
It follows from eqns 1 and 6b that
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A similar expression, with magnetic dipole moments in 
place of electric dipole moments, applies to magnetic 
interactions (see The chemist’s toolkit 27 in Topic 12B).




