A DEEPER LOOK 8 The electric dipole-dipole interaction

An important problem in physical chemistry is the calculation of the potential energy of interaction between two point electric dipoles with moments μ_{1} and μ_{2}, separated by a vector r. The starting point is an expression from classical electromagnetic theory for the potential energy of μ_{2} in the electric field \mathcal{E}_{1} generated by μ_{1} :

$$
\begin{equation*}
V=-\mathcal{E}_{1} \cdot \boldsymbol{\mu}_{2} \tag{1}
\end{equation*}
$$

In three dimensions, the strength of the electric field (a scalar quantity) can be expressed in terms of ϕ, the Coulomb potential due to the distribution of charges in the system, as

$$
\begin{equation*}
\mathcal{E}_{1}=-\nabla \phi \tag{2}
\end{equation*}
$$

where the result of the operation ∇ on a function $f(x, y, z)$ is a vector with x, y, and z components calculated by forming $\partial f / \partial x, \partial f / \partial y$, and $\partial f / \partial z$, respectively:

$$
\begin{equation*}
\nabla f=\left(\frac{\partial f}{\partial x}\right)_{y, z} \hat{\boldsymbol{i}}+\left(\frac{\partial f}{\partial y}\right)_{z, x} \hat{\boldsymbol{j}}+\left(\frac{\partial f}{\partial z}\right)_{x, y} \hat{\boldsymbol{k}} \tag{3}
\end{equation*}
$$

The goal is then to write an expression for \mathcal{E}_{1}, and then take the dot (scalar) product of \mathcal{E}_{1} with μ_{2}.
Step 1 Write an expression for the Coulomb potential
To calculate \mathcal{E}_{1}, consider a distribution of point charges Q_{i} located at x_{i}, y_{i}, and z_{i} from the origin (1). Let \boldsymbol{r} be a vector pointing from the origin $(0,0,0)$ to the location of the point of interest (x, y, z), and \boldsymbol{r}_{i} a vector pointing from the origin to the locations of the charges Q_{i}, with coordinates $\left(x_{i} y_{i}, z_{i}\right)$. It follows that the magnitude of \boldsymbol{r} is $r=\left(x^{2}+y^{2}+\right.$ $\left.z^{2}\right)^{1 / 2}$, that of \boldsymbol{r}_{i} is $r_{i}=\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)^{1 / 2}$, and that the magnitude of the resultant $\boldsymbol{r}-\boldsymbol{r}_{i}$ is $r_{\text {res }}=\left\{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right\}^{1 / 2}$. The Coulomb potential ϕ due to this distribution at a point with coordinates x, y, and z is:

$$
\begin{equation*}
\phi=\sum_{i} \frac{Q_{i}}{4 \pi \varepsilon_{0}} \frac{1}{\left\{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right\}^{1 / 2}} \tag{4}
\end{equation*}
$$

Step 2 Make approximations

If all the charges are close to the origin (in the sense that $r_{i} \ll r$ and $r_{\text {res }} \approx r$), then a Taylor expansion (The chemist's toolkit 12 in Topic 5B) can be used to write
$\begin{aligned} \phi & =\sum_{i} \frac{Q_{i}}{4 \pi \varepsilon_{0}} \\ & \left\{\frac{1}{r}+\left(\frac{\partial\left\{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right\}^{-1 / 2}}{\partial x_{i}}\right)_{x_{i}=0} x_{i}+\cdots\right\}(5 \mathrm{a})\end{aligned}$
where the ellipses include the terms arising from derivatives with respect to y_{i} and z_{i} and higher derivatives. Because of the approximations being made, the derivative in blue evaluates to

$$
\begin{aligned}
& \left(\frac{\partial\left\{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right\}^{-1 / 2}}{\partial x_{i}}\right)_{x_{i}=0} \\
& \quad=\left(\frac{x-x_{i}}{\left\{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}\right\}^{3 / 2}}\right)_{x_{i}=0}=\frac{x}{r_{\text {res }}^{3}} \approx \frac{x}{r^{3}}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\phi=\sum_{i} \frac{Q_{i}}{4 \pi \varepsilon_{0}}\left\{\frac{1}{r}+\frac{x x_{i}}{r^{3}}+\cdots\right\} \tag{5b}
\end{equation*}
$$

If the charge distribution is electrically neutral, the first term disappears because $\sum_{i} Q_{i}=0$. Next note that, $\sum_{i} Q_{i} x_{i}=$ μ_{x} and likewise for the y - and z-components. That is,

$$
\begin{equation*}
\phi=\frac{1}{4 \pi \varepsilon_{0} r^{3}}\left(\mu_{x} x+\mu_{y} y+\mu_{z} z\right)+\cdots=\frac{1}{4 \pi \varepsilon_{0} r^{3}} \mu_{1} \cdot \boldsymbol{r}+\cdots \tag{5c}
\end{equation*}
$$

The higher-order terms correspond to the higher multipoles of the charge distribution, and will be considered no further here.

Step 3 Write an expression for the electric field strength It follows from eqns 2 and 5 that the electric field strength is

$$
\begin{equation*}
\mathcal{E}_{1}=-\frac{1}{4 \pi \varepsilon_{0}} \nabla \frac{\mu_{1} \cdot \boldsymbol{r}}{r^{3}} \tag{6a}
\end{equation*}
$$

To evaluate the derivative in this expression, first note that $\nabla(f g)=f \nabla g+g \nabla f$, so

$$
\nabla \frac{\mu_{1} \cdot \boldsymbol{r}}{r^{3}}=\frac{1}{r^{3}} \nabla\left(\mu_{1} \cdot \boldsymbol{r}\right)+\left(\boldsymbol{\mu}_{1} \cdot \boldsymbol{r}\right) \nabla \frac{1}{r^{3}}
$$

It follows that:

- The result of the operation $\nabla\left(\mu_{1} \cdot \boldsymbol{r}\right)=\nabla\left(\mu_{x} x+\mu_{y} y+\mu_{z} z\right)$ is a vector with components

$$
\frac{\partial}{\partial x} \mu_{x} x=\mu_{x} \quad \frac{\partial}{\partial y} \mu_{y} y=\mu_{y} \quad \frac{\partial}{\partial z} \mu_{z} z=\mu_{z}
$$

These are the components of the vector μ_{1}, so $\nabla\left(\mu_{1} \cdot \boldsymbol{r}\right)=\mu_{1}$.

- The result of the operation $\nabla\left(1 / r^{3}\right)=\nabla\left\{\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\right\}$ is a vector with components

$$
\begin{aligned}
& \frac{\partial}{\partial x} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=-\frac{3 x}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=-\frac{3}{r^{5}} x \\
& \frac{\partial}{\partial y} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=-\frac{3 y}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=-\frac{3}{r^{5}} y
\end{aligned}
$$

$$
\frac{\partial}{\partial z} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=-\frac{3 z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=-\frac{3}{r^{5}} z
$$

That is,

$$
\nabla \frac{1}{r^{3}}=\frac{3}{r^{5}}(x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}})=-\frac{3}{r^{5}} \boldsymbol{r}
$$

The electric field strength is therefore

$$
\begin{equation*}
\mathcal{E}_{1}=-\frac{\mu_{1}}{4 \pi \varepsilon_{0} r^{3}}+3 \frac{\left(\mu_{1} \cdot \boldsymbol{r}\right) r}{4 \pi \varepsilon_{0} r^{5}} \tag{6b}
\end{equation*}
$$

Step 4 Write an expression for the potential energy of interaction
It follows from eqns 1 and 6 b that

$$
V=-\left\{-\frac{\mu_{1}}{4 \pi \varepsilon_{0} r^{3}}+3 \frac{\left(\boldsymbol{\mu}_{1} \cdot \boldsymbol{r}\right) \boldsymbol{r}}{4 \pi \varepsilon_{0} r^{5}}\right\} \cdot \boldsymbol{\mu}_{2}
$$

and

$$
\begin{align*}
V & =\frac{\mu_{1} \cdot \mu_{2}}{4 \pi \varepsilon_{0} r^{3}}-3 \frac{\left(\mu_{1} \cdot \boldsymbol{r}\right)\left(\boldsymbol{r} \cdot \mu_{2}\right)}{4 \pi \varepsilon_{0} r^{5}} \\
& =\frac{1}{4 \pi \varepsilon_{0} r^{3}}\left\{\mu_{1} \cdot \mu_{2}-3 \frac{\left(\mu_{1} \cdot \boldsymbol{r}\right)\left(\boldsymbol{r} \cdot \mu_{2}\right)}{r^{2}}\right\} \tag{7}
\end{align*}
$$

A similar expression, with magnetic dipole moments in place of electric dipole moments, applies to magnetic interactions (see The chemist's toolkit 27 in Topic 12B).

