
A deeper look 10   Establishing the relation 
between bulk and molecular properties

The isothermal compressibility is defined as κT = −(∂V/∂p)T/V, 
and the bulk modulus K is simply 1/κT, so it follows that 
K = −V(∂p/∂V)T. The following calculation supposes that 
T is fixed at 0, so T is no longer a variable and the partial 
derivative becomes a complete derivative: K = −V(dp/dV) 
at T = 0.

Step 1  Express the pressure in terms of the internal energy
You need to start from the fundamental thermodynamic 
equation dU = TdS − pdV (this is eqn 3E.1 of Topic 3E), and 
impose the condition T = 0; it follows that p = − dU/dV at 
T = 0. This relation is now combined with the definition 
of K to give 
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This expression shows that the bulk modulus (and through 
eqn 15D.3, the other two moduli) depends on the curva-
ture of a plot of the internal energy against volume. 

Step 2  Relate the change in volume to the change in a 
lattice parameter
Now express the variation of internal energy with volume 
in terms of its variation with a lattice parameter, a, such as 
the length of the side of a unit cell:
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and so obtain
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To calculate K at the equilibrium volume of the sample, a 
is set to its equilibrium value, aeq, and recognize that, at 
equilibrium, dU/da = 0. Therefore, the first (blue) term on 
the right is zero leaving
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This relation now implies that, at T = 0,
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where the subscript 0 denotes that the derivatives are 
evaluated at the equilibrium dimensions of the unit cell 
by setting a = aeq after the derivative has been calculated. 
At this stage, write the volume V as V aeq

3= ; it follows that 
da/dV = 1/3a2, so
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Step 3  Relate the internal energy to the intermolecular 
potential energy
If the molecules in the solid interact by a pairwise 
Lennard-Jones (12,6)-potential energy ELJ = 4ε{(R0/R)12 
− (R0/R)6} where R is the internuclear distance between 
atoms (eqn 14B.12 in Topic 14B), it follows that the internal 
energy of the solid is U = nNAELJ, where n is the amount 
of substance. The size of the unit cell scales with R, so a = 
kR, where k is a constant that depends on the type of unit 
cell; similarly, aeq = kReq. The minimum potential energy is 
at =R R2eq

1/6
0. With these points in mind, take the second 

derivative of U with respect to a and obtain
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Now set R to its equilibrium value:
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In terms of the equilibrium internuclear distance Req,
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It then follows from eqn 1 that
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The molar volume is V V n/m = , so finally
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V

8 A

m

That is, the bulk modulus is large if the interaction between 
molecules is strong and the molar volume is small.




