A DEEPER LOOK 10 Establishing the relation between bulk and molecular properties

The isothermal compressibility is defined as $\kappa_{T}=-(\partial V / \partial p)_{T} / V$, and the bulk modulus K is simply $1 / \kappa_{T}$, so it follows that $K=-V(\partial p / \partial V)_{T}$. The following calculation supposes that T is fixed at 0 , so T is no longer a variable and the partial derivative becomes a complete derivative: $K=-V(\mathrm{~d} p / \mathrm{d} V)$ at $T=0$.

Step 1 Express the pressure in terms of the internal energy You need to start from the fundamental thermodynamic equation $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$ (this is eqn 3E. 1 of Topic 3E), and impose the condition $T=0$; it follows that $p=-\mathrm{d} U / \mathrm{d} V$ at $T=0$. This relation is now combined with the definition of K to give

$$
K=-V \frac{\mathrm{~d} p}{\mathrm{~d} V}=V \frac{\mathrm{~d}^{2} U}{\mathrm{~d} V^{2}} \quad(\text { at } T=0)
$$

This expression shows that the bulk modulus (and through eqn 15D.3, the other two moduli) depends on the curvature of a plot of the internal energy against volume.
Step 2 Relate the change in volume to the change in a lattice parameter
Now express the variation of internal energy with volume in terms of its variation with a lattice parameter, a, such as the length of the side of a unit cell:

$$
\frac{\mathrm{d} U}{\mathrm{~d} V}=\frac{\mathrm{d} U}{\mathrm{~d} a} \frac{\mathrm{~d} a}{\mathrm{~d} V}
$$

Then

$$
\begin{aligned}
\frac{\mathrm{d}^{2} U}{\mathrm{~d} V^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} V}\left(\frac{\mathrm{~d} U}{\mathrm{~d} a} \frac{\mathrm{~d} a}{\mathrm{~d} V}\right) \\
& =\frac{\mathrm{d} U}{\mathrm{~d} a}\left(\frac{\mathrm{~d}^{2} a}{\mathrm{~d} V^{2}}\right)+\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} V \mathrm{~d} a}\right) \frac{\mathrm{d} a}{\mathrm{~d} V}
\end{aligned}
$$

Now use

$$
\begin{aligned}
\frac{\mathrm{d}^{2} U}{\mathrm{~d} V \mathrm{~d} a} & =\frac{\mathrm{d}}{\mathrm{~d} a}\left(\frac{\mathrm{~d} U}{\mathrm{~d} V}\right)=\frac{\mathrm{d}}{\mathrm{~d} a}\left(\frac{\mathrm{~d} U}{\mathrm{~d} a} \frac{\mathrm{~d} a}{\mathrm{~d} V}\right) \\
& =\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} V}\right)+\left(\frac{\mathrm{d} U}{\mathrm{~d} a}\right) \frac{\mathrm{d}^{2} a}{\mathrm{~d} V \mathrm{~d} a}
\end{aligned}
$$

and so obtain

$$
\begin{aligned}
\frac{\mathrm{d}^{2} U}{\mathrm{~d} V^{2}} & =\left(\frac{\mathrm{d} U}{\mathrm{~d} a}\right)\left(\frac{\mathrm{d}^{2} a}{\mathrm{~d} V^{2}}\right)+\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} V}\right)^{2} \\
& +\left(\frac{\mathrm{d} U}{\mathrm{~d} a}\right) \overbrace{\left(\frac{\mathrm{d}^{2} a}{\mathrm{~d} V \mathrm{~d} a}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} V}\right)}^{\left(\mathrm{d} V^{2}\right)} \\
= & 2\left(\frac{\mathrm{~d} U}{\mathrm{~d} a}\right)\left(\frac{\mathrm{d}^{2} a}{\mathrm{~d} V^{2}}\right)+\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} V}\right)^{2}
\end{aligned}
$$

To calculate K at the equilibrium volume of the sample, a is set to its equilibrium value, $a_{\text {eq }}$, and recognize that, at equilibrium, $\mathrm{d} U / \mathrm{d} a=0$. Therefore, the first (blue) term on the right is zero leaving

$$
\frac{\mathrm{d}^{2} U}{\mathrm{~d} V^{2}}=\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)\left(\frac{\mathrm{d} a}{\mathrm{~d} V}\right)^{2}
$$

This relation now implies that, at $T=0$,

$$
\begin{equation*}
K=V\left(\frac{\mathrm{~d}^{2} U}{\mathrm{~d} V^{2}}\right)_{0}=V\left(\frac{\mathrm{~d}^{2} U}{\mathrm{~d} a^{2}}\right)_{0}\left(\frac{\mathrm{~d} a}{\mathrm{~d} V}\right)_{0}^{2} \tag{1}
\end{equation*}
$$

where the subscript 0 denotes that the derivatives are evaluated at the equilibrium dimensions of the unit cell by setting $a=a_{\mathrm{eq}}$ after the derivative has been calculated. At this stage, write the volume V as $V=a_{\mathrm{eq}}^{3}$; it follows that $\mathrm{d} a / \mathrm{d} V=1 / 3 a^{2}$, so

$$
K=\frac{V}{\left(3 a_{\mathrm{eq}}^{2}\right)^{2}}\left(\frac{\mathrm{~d}^{2} U}{\mathrm{~d} a^{2}}\right)_{0}=\frac{1}{9 a_{\mathrm{eq}}}\left(\frac{\mathrm{~d}^{2} U}{\mathrm{~d} a^{2}}\right)_{0}
$$

Step 3 Relate the internal energy to the intermolecular potential energy
If the molecules in the solid interact by a pairwise Lennard-Jones (12,6)-potential energy $E_{\mathrm{LJ}}=4 \mathcal{E}\left\{\left(R_{0} / R\right)^{12}\right.$ - $\left.\left(R_{0} / R\right)^{6}\right\}$ where R is the internuclear distance between atoms (eqn 14B. 12 in Topic 14B), it follows that the internal energy of the solid is $U=n N_{\mathrm{A}} E_{\mathrm{L}}$, where n is the amount of substance. The size of the unit cell scales with R, so $a=$ $k R$, where k is a constant that depends on the type of unit cell; similarly, $a_{\text {eq }}=k R_{\text {eq }}$. The minimum potential energy is at $R_{\text {eq }}=2^{1 / 6} R_{0}$. With these points in mind, take the second derivative of U with respect to a and obtain

$$
\begin{aligned}
\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}} & =\frac{1}{k^{2}} \frac{\mathrm{~d}^{2} U}{\mathrm{~d} R^{2}}=\frac{4 \varepsilon n N_{\mathrm{A}}}{k^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left\{-12 \frac{R_{0}^{12}}{R^{13}}+6 \frac{R_{0}^{6}}{R^{7}}\right\} \\
& =\frac{4 \varepsilon n N_{\mathrm{A}}}{k^{2}}\left\{12 \times 13 \frac{R_{0}^{12}}{R^{14}}-6 \times 7 \frac{R_{0}^{6}}{R^{8}}\right\}
\end{aligned}
$$

Now set R to its equilibrium value:

$$
\begin{aligned}
\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)_{0} & =\frac{4 \varepsilon n N_{\mathrm{A}}}{k^{2}}\left\{12 \times 13 \frac{R_{0}^{12}}{R_{\mathrm{eq}}^{14}}-6 \times 7 \frac{R_{0}^{6}}{R_{\mathrm{eq}}^{8}}\right\} \\
& =\frac{4 \varepsilon n N_{\mathrm{A}}}{k^{2}}\left\{\frac{12 \times 13}{2^{7 / 3} R_{0}^{2}}-\frac{6 \times 7}{2^{4 / 3} R_{0}^{2}}\right\}=\frac{72 \varepsilon n N_{\mathrm{A}}}{2^{1 / 3} k^{2} R_{0}^{2}}
\end{aligned}
$$

In terms of the equilibrium internuclear distance $R_{\text {eq }}$,

$$
\left(\frac{\mathrm{d}^{2} U}{\mathrm{~d} a^{2}}\right)_{0}=\frac{72 \varepsilon n N_{\mathrm{A}}}{2^{1 / 3} k^{2}\left(2^{-1 / 6} R_{\mathrm{eq}}\right)^{2}}=\frac{72 \varepsilon n N_{\mathrm{A}}}{k^{2} R_{\mathrm{eq}}^{2}}
$$

It then follows from eqn 1 that

$$
K=\frac{1}{9 a_{\mathrm{eq}}} \times \underbrace{\frac{72 \varepsilon n N_{\mathrm{A}}}{k^{2} R_{\mathrm{eq}}^{2}}}_{a_{\mathrm{eq}}^{2}}=\underbrace{\frac{8 \varepsilon n N_{\mathrm{A}}}{a_{\mathrm{eq}}^{3}}}_{V}=\frac{8 \varepsilon n N_{\mathrm{A}}}{V}
$$

The molar volume is $V_{\mathrm{m}}=V / n$, so finally

$$
K=\frac{8 \varepsilon N_{\mathrm{A}}}{V_{\mathrm{m}}}
$$

That is, the bulk modulus is large if the interaction between molecules is strong and the molar volume is small.

