
A deeper look 12  The RRK model 

The essential feature of the RRK model is that although a molecule might have enough energy to react, that energy is 
distributed over all the modes of motion of the molecule, and reaction will occur only when enough of that energy has 
migrated into a particular location (such as a particular bond) in the molecule. 

Step 1 Set up the model
Suppose that a molecule consists of s identical harmonic oscillators, each of which has frequency ν. In practice, of course, 
the vibrational modes of a molecule have different frequencies, but assuming that they are all the same is a reasonable first 
approximation. Next, suppose that the vibrations are excited to a total energy E = nhν: that is, there are n quanta in total
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These quanta must be put in s containers (the s oscillators), which can be represented by inserting s − 1 walls, denoted by |.  
One such distribution is

(The leftmost partition is the critical oscillator.) However, these arrangements are equivalent to

The total number of arrangements of the quanta and the walls (of which there are n + s −1 in all) is (n + s − 1)! where, as usual, x! = 
x(x − 1)...1. However the n! arrangements of the n quanta are indistinguishable, as are the (s − 1)! arrangements of the s − 1 walls. 
Therefore, to find the number N of ways in which the energy can be distributed, divide (n + s − 1)! by n! and by (s − 1)! to give 
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Step 3 Consider the effect of excitation of a critical oscillator that undergoes dissociation 
The distribution of the energy throughout the molecule means that it is too sparsely spread over all the modes for any particu-
lar bond to be sufficiently highly excited to undergo dissociation. Suppose that a bond will break only if it is excited to at least 
an energy E* = n*hν. Therefore, isolate one critical oscillator as the one that undergoes dissociation if it has at least n* of the 
quanta, leaving up to n − n* quanta to be accommodated in the remaining s − 1 oscillators (and therefore with s − 2 walls in the 
partition in place of the s −1 walls used above). For example, consider 28 quanta distributed over 6 oscillators, with excitation by 
at least 6 quanta required for dissociation. Then all the following arrangements of quanta and walls will result in dissociation:

Step 2 Calculate the number of ways in which the energy can be distributed over the oscillators
Represent the n quanta as follows:

and the problem is that of permuting 28 − 6 = 22 (in general, n − n*) quanta and 5 (in general, s − 1) walls, and therefore 
a total of 27 (in general, n − n* + s − 1 objects). Therefore, the calculation is exactly like the one above for N, except that 
you need to find the number of distinguishable permutations of n − n* quanta in s containers (and therefore s − 1 walls). 
The number N* is therefore obtained from the expression for N by replacing n by n − n* and is
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Step 4 Write an expression for the probability of dissocia-
tion of an oscillator
It follows from the preceding discussion that the prob-
ability that one specific oscillator will have undergone suf-
ficient excitation to dissociate is the ratio N*/N, which is
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This equation is still awkward to use, even when written 
out in terms of its factors:
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Consider first the ratio of the terms in blue
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The denominator cancels all terms in the numerator from 
n − n* down to 1, so the surviving part of this term is simply
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Now consider the terms in black in the expression for P
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In this case, the numerator cancels all terms in the 
denominator from n down to 1, leaving
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The expression for P therefore simplifies to
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However, because s − 1 is small (in the sense that s − 1 << 
n − n*), approximate this expression by
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Because the energy of the excited molecule is E = nhν and 
the critical energy is E* = n*hν, this expression may be 
written as
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Step 5 Write an expression for the rate constant
The unimolecular rate constant kb(E) for the decay of A* to 
products may now be written as
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where kb is the rate constant used in the original 
Lindemann−Hinshelwood theory for the decomposition 
of the activated intermediate (Topic 17F). This is eqn 
18A.11 of the text.




