

Student Solutions Manual to Accompany Atkins' Physical Chemistry

ELEVENTH EDITION

Peter Bolgar Haydn Lloyd Aimee North Vladimiras Oleinikovas Stephanie Smith and James Keeler

Department of Chemistry University of Cambridge UK

Numerical solutions to the problems

compiled by Jack Entwistle

Selwyn College and the Department of Chemistry University of Cambridge

Preface

This document is a compilation of the numerical solutions to the (a) *Exercises* and the odd-numbered *Discussion questions* and *Problems* from the 11th edition of *Atkins' Physical Chemistry*. Where a problem requests the derivation of a result or expression, and provided that expression is not too complex, we have also included such results.

Errors and omissions

In such a complex undertaking some errors will no doubt have crept in, despite the authors' best efforts. Readers who identify any errors or omissions are invited to pass them on to us by email to pchem@ch.cam.ac.uk.

Jack Entwistle James Keeler

Cambridge, August 2018

1 The properties of gases

1A The perfect gas

E1A.1(a) 810 Torr 0.962 atm E1A.2(a) no 24.4 atm E1A.3(a) 3.42 bar 3.38 atm **E1A.4(a)** 30 lb in⁻². **E1A.5(a)** 0.0427 bar 4.27×10^5 Pa **E1A.6(a)** S₈. E1A.7(a) 6.2 kg **E1A.8(a)** $x_{O_2} = 0.240$ $x_{N_2} = 0.760$ $p_{O_2} = 0.237$ bar $p_{N_2} = 0.750$ bar $x_{N_2} = 0.780$ $x_{O_2} = 0.210$ $p_{N_2} = 0.770$ bar $p_{O_2} = 0.207$ bar $E1A.9(a) 0.169 \text{ kg mol}^{-1}$ **E1A.10(a)** $\theta = -273 \,^{\circ}\text{C}$ **E1A.11(a)** $x_{H_2} = \frac{2}{3}$ $x_{N_2} = \frac{1}{3}$ $p_{H_2} = 2.0 \times 10^5 \text{ Pa}$ $p_{N_2} = 1.0 \times 10^5 \text{ Pa}$ $p_{\text{tot}} = 3.0 \times 10^5 \text{ Pa}$ **P1A.1** 1.15×10^5 Pa 8.315 J K⁻¹ mol⁻¹ **P1A.3** 0.082062 atm dm³ mol⁻¹ K⁻¹ **P1A.5** $p = \rho RT/M$ 45.94 g mol⁻¹ **P1A.7** 24.5 Pa 9.14 kPa 24.5 Pa P1A.9 between 0.27 km³ and 0.41 km³ **P1A.11** – 2 Pa 0.25 atm **P1A.13** $c_{\text{CCl}_3\text{F}} = 1.1 \times 10^{-11} \text{ mol dm}^{-3}$ $c_{\text{CCl}_2\text{F}_2} = 2.2 \times 10^{-11} \text{ mol dm}^{-3}$ $c_{\text{CCl}_3\text{F}} = 8.0 \times 10^{-11} \text{ mol dm}^{-3}$ $10^{-13} \text{ mol dm}^{-3}$ $c_{\text{CCl}_2\text{F}_2} = 1.6 \times 10^{-12} \text{ mol dm}^{-3}$

1B The kinetic model

E1B.1(a) 9.975 E1B.2(a) $v_{\rm rms,H_2} = 1.90 \text{ km s}^{-1}$ $v_{\rm rms,O_2} = 478 \text{ m s}^{-1}$ E1B.3(a) 6.87×10^{-3} E1B.4(a) 1832 m s^{-1} E1B.5(a) $v_{\rm mp} = 333 \text{ m s}^{-1}$ $v_{\rm mean} = 376 \text{ m s}^{-1}$ $v_{\rm rel} = 531 \text{ m s}^{-1}$ E1B.6(a) $1.7 \times 10^{10} \text{ s}^{-1}$ E1B.7(a) 475 m s^{-1} 82.9 nm $8.10 \times 10^9 \text{ s}^{-1}$ E1B.8(a) 0.20 PaE1B.9(a) $1.4 \times 10^{-6} \text{ m} = 1.4 \mu \text{m}$ P1B.3 $v_{\rm mean, new} \approx 0.493 v_{\rm mean}$ P1B.5 3.02×10^{-3} for n = 3 4.89×10^{-6} for n = 4P1B.7 $1.12 \times 10^4 \text{ m s}^{-1}$ $5.04 \times 10^3 \text{ m s}^{-1}$

1C Real gases

E1C.1(a) 0.99 atm 1.8×10^3 atm **E1C.2(a)** $a = 0.0761 \text{ kg m}^5 \text{ s}^{-2} \text{ mol}^{-2}$ $b = 2.26 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$ **E1C.3(a)** $0.88 \quad 1.2 \text{ dm}^3 \text{ mol}^{-1}$ E1C.4(a) 140 atm EIC.5(a) 50.7 atm 35.2 atm 0.695 **E1C.6(a)** 1.78 atm dm⁶ mol⁻² 0.0362 dm³ mol⁻¹ 153 pm **E1C.7(a)** 1.41×10^3 K 175 pm **E1C.8(a)** 8.7 atm 3.6×10^3 K 4.5 atm 2.6×10^3 K 0.18 atm 47 K **E1C.9(a)** $4.6 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1} \quad 0.66$ **P1C.1** 1.62 atm **P1C.3** 0.929 $0.208 \text{ dm}^3 \text{ mol}^{-1}$ P1C.5 501.0 K **P1C.7** $0.1353 \text{ dm}^3 \text{ mol}^{-1}$ 0.6957 0.5914 **P1C.9** $0.0594 \text{ dm}^3 \text{ mol}^{-1}$ 5.849 atm dm⁶ mol⁻². 20.48 atm **PIC.11** 0.03464 dm³ mol⁻¹ 1.262 atm dm⁶ mol⁻² **P1C.13** $V_{\rm m} = 3C/B$ $T = B^2/3CR$ $p = B^3/27C^2$ **P1C.15** $B' = 0.0868 \text{ atm}^{-1}$ $B = 2.12 \text{ dm}^3 \text{ mol}^{-1}$ **P1C.19** $1 + \frac{bp}{RT}$ 1.11 **P1C.21** $-0.01324 \text{ dm}^3 \text{ mol}^{-1}$ $1.063 \times 10^{-3} \text{ dm}^6 \text{ mol}^{-2}$ **P1C.23** $V_{\rm m} = 13.6 \, {\rm dm}^3 \, {\rm mol}^{-1} 2\%$ $\mathbf{I1.1} \ \boldsymbol{v} = \left(\frac{2RT}{M}\right)^{1/2}$ **I1.3** $0.071 \text{ dm}^3 \text{ mol}^{-1}$

2 Internal energy

2A Internal energy

```
E2A.1(a) 8.7 \text{ kJ mol}^{-1} 7.4 kJ mol<sup>-1</sup> 7.4 kJ mol<sup>-1</sup>

E2A.3(a) -76 J

E2A.4(a) q = +2.68 \text{ kJ} w = -2.68 \text{ kJ} \Delta U = 0 q = +1.62 \text{ kJ} w = -1.62 \text{ kJ} \Delta U = 0

q = 0 w = 0 \Delta U = 0

E2A.5(a) p_f = 1.33 \text{ atm} \Delta U = +1.25 \text{ kJ} q = +1.25 \text{ kJ} w = 0

E2A.6(a) -88 J -1.7 × 10<sup>2</sup> J

P2A.1 6.2 kJ mol<sup>-1</sup>

P2A.3 \frac{1}{2}al^2 - \frac{2}{5}bl^{\frac{5}{2}}

P2A.7 -1.7 kJ -1.8 kJ -1.5 kJ

P2A.9 -1.5 kJ -1.6 kJ
```

2B Enthalpy

E2B.1(a) $C_{p,m} = 30 \text{ J K}^{-1} \text{ mol}^{-1}$ $C_{V,m} = 22 \text{ J K}^{-1} \text{ mol}^{-1}$ **E2B.2(a)** -5.0 kJ mol^{-1} **E2B.3(a)** $q_p = +10.7 \text{ kJ}$ w = -624 J $\Delta U = +10.1 \text{ kJ}$ $\Delta H = +10.7 \text{ kJ}$ $q_V = +10.1 \text{ kJ}$ w = 0 $\Delta U = +10.1 \text{ kJ}$ $\Delta H = +10.7 \text{ kJ}$ **E2B.4(a)** $q_p = \Delta H = +2.2 \text{ kJ}$ $\Delta U = +1.6 \text{ kJ}$ **P2B.1** 11 min **P2B.3** 62.2 kJ **P2B.5** w = 0 $\Delta U = q_V = +2.35 \text{ kJ}$ $\Delta H = 3.0 \text{ kJ}$

2C Thermochemistry

E2C.1(a) $q = \Delta H = +22.5 \text{ kJ}$ w = -1.6 kJ $\Delta U = +21 \text{ kJ}$ E2C.2(a) $-4.57 \times 10^3 \text{ kJ mol}^{-1}$ E2C.3(a) -167 kJ mol^{-1} E2C.4(a) $1.58 \text{ kJ K}^{-1} +3.07 \text{ K}$ E2C.5(a) $\Delta_r H^{\circ}(3) = -114.40 \text{ kJ mol}^{-1}$ $\Delta_r U^{\circ} = -112 \text{ kJ mol}^{-1}$ $\Delta_f H^{\circ}(\text{HCl, g}) = -92.31 \text{ kJ mol}^{-1}$ $\Delta_f H^{\circ}(\text{H}_2\text{O}, \text{g}) = -241.82 \text{ kJ mol}^{-1}$ E2C.6(a) $-1368 \text{ kJ mol}^{-1}$ E2C.7(a) $\Delta_r H^{\circ}(298 \text{ K}) = +131.29 \text{ kJ mol}^{-1}$ $\Delta_r U^{\circ}(298 \text{ K}) = +128.81 \text{ kJ mol}^{-1}$ $\Delta_r H^{\circ}(478 \text{ K}) = +134.1 \text{ kJ mol}^{-1}$ $\Delta_r U^{\circ}(478 \text{ K}) = +130 \text{ kJ mol}^{-1}$ E2C.8(a) -394 kJ mol^{-1}

```
\begin{aligned} \textbf{P2C.3} + 52.98 \text{ kJ mol}^{-1} & -32.56 \text{ kJ mol}^{-1} \\ \textbf{P2C.5} - 1.27 \times 10^3 \text{ kJ mol}^{-1} \\ \textbf{P2C.7} & \Delta_c H^{\circ} = -25966 \text{ kJ mol}^{-1} & \Delta_f H^{\circ} = +2355.1 \text{ kJ mol}^{-1} \\ \textbf{P2C.9} - 803 \text{ kJ mol}^{-1} \\ \textbf{P2C.11} - 2.80 \times 10^3 \text{ kJ mol}^{-1} & -2.80 \times 10^3 \text{ kJ mol}^{-1} & -1.27 \times 10^3 \text{ kJ mol}^{-1} & 2.69 \times 10^3 \text{ kJ mol}^{-1} \end{aligned}
```

2D State functions and exact differentials

```
E2D.1(a) 501 Pa

E2D.2(a) \Delta U_{\rm m} = +130 \text{ J mol}^{-1} q = +7.52 \text{ kJ mol}^{-1} w = -7.39 \text{ kJ mol}^{-1}

E2D.3(a) +1.3 \times 10^{-3} \text{ K}^{-1}

E2D.4(a) +20 \text{ atm}

E2D.5(a) +44.2 \text{ J K}^{-1} \text{ mol}^{-1}

P2D.1 0.80 m 1.6 m 2.8 m

P2D.5 \kappa_T R = \alpha (V_{\rm m} - b)

P2D.9 23 K MPa<sup>-1</sup> 14 K MPa<sup>-1</sup>
```

2E Adiabatic changes

E2E.1(a) With vibrational contribution $y_{ammonia} = \frac{10}{9}$ $y_{methane} = \frac{13}{12}$ Without vibrational contribution $y_{ammonia} = y_{methane} = \frac{4}{3}$ **E2E.2(a)** 1.3×10^2 K **E2E.3(a)** $V_f = 8.46$ dm³ 258 K -877 J **E2E.4(a)** -194 J **E2E.5(a)** 9.7 kPa **P2E.1** $T_f = 194$ K $w_{ad} = -2.79$ kJ $\Delta U = -2.79$ kJ

2E Integrated activities

I2.7 –2.6 kJ

3 The second and third laws

3A Entropy

E3A.1(a) not spontaneous E3A.2(a) +366 J +309 J E3A.3(a) +3.1 J K⁻¹ E3A.4(a) $\Delta S = +2.9$ J K⁻¹ $\Delta S_{sur} = -2.9$ J K⁻¹ $\Delta S_{tot} = 0$ $\Delta S = +2.9$ J K⁻¹ $\Delta S_{sur} = 0$ $\Delta S_{tot} = +2.9$ J K⁻¹ $\Delta S = \Delta S_{sur} = \Delta S_{tot} = 0$ E3A.5(a) 191 K E3A.6(a) 24.1% P3A.1 q = +2.74 kJ w = -2.74 kJ $\Delta U = 0$ $\Delta H = 0$ $\Delta S = +9.13$ J K⁻¹ $\Delta S_{sur} = -9.13$ J K⁻¹ $\Delta S_{tot} = 0$ q = +1.66 kJ w = -1.66 kJ $\Delta U = 0$ $\Delta H = 0$ $\Delta S = +9.13$ J K⁻¹ $\Delta S_{sur} = -5.54$ J K⁻¹ $\Delta S_{tot} = +3.59$ J K⁻¹ P3A.3 $V_B = 2.00$ dm³ $V_C = 3.19$ dm³ $V_D = 1.60$ dm³ $q_1 = +215$ J $q_2 = 0$ $q_3 = -157$ J $q_4 = 0$ |w| = +58 J 27% P3A.5 $|q| \times \left(\frac{T_h}{T_c} - 1\right)$

3B Entropy changes accompanying specific processes

E3B.1(a) +30 kJ mol⁻¹ E3B.2(a) +87.8 J K⁻¹ mol⁻¹ -87.8 J K⁻¹ mol⁻¹ E3B.3(a) +4.55 J K⁻¹ mol⁻¹ E3B.4(a) 153 J K⁻¹ mol⁻¹ E3B.5(a) $T_{\rm f} = 298$ K $\Delta S_1 = -31.0$ J K⁻¹ $\Delta S_2 = +33.7$ J K⁻¹ $\Delta S_{\rm tot} = +2.7$ J K⁻¹ E3B.6(a) -22.1 J K⁻¹ E3B.7(a) +87.3 J K⁻¹ P3B.1 $\Delta S = -21.3$ J K⁻¹ $\Delta S_{\rm sur} = +21.7$ J K⁻¹ $\Delta S_{\rm tot} = +0.4$ J K⁻¹ spontaneous $\Delta S = +110$ J K⁻¹ $\Delta S_{\rm sur} = -111$ J K⁻¹ $\Delta S_{\rm tot} = -1.5$ J K⁻¹ not spontaneous P3B.3 +10.7 J K⁻¹ mol⁻¹ P3B.5 $\frac{m}{M}C_{p,m} \ln\left(\frac{(T_c + T_h)^2}{4(T_c \times T_h)}\right) +22.6$ J K⁻¹ P3B.7 $\Delta S = +45.4$ J K⁻¹ $\Delta S = 0$ J K⁻¹ $\Delta S_{\rm sur} = +51.2$ J K⁻¹ P3B.9 +477 J K⁻¹ mol⁻¹ P3B.11 +7.5 × 10² J 6.11 × 10³ J +6.86 kJ 68.6 s

3C The measurement of entropy

E3C.1(a) $4.8 \times 10^{-3} \text{ J K}^{-1} \text{ mol}^{-1}$

E3C.2(a) $-386.1 \text{ J K}^{-1} \text{ mol}^{-1} +92.6 \text{ J K}^{-1} \text{ mol}^{-1} -153.1 \text{ J K}^{-1} \text{ mol}^{-1}$ E3C.3(a) -99.38 J K^{-1} P3C.1 76.04 J K⁻¹ mol⁻¹ P3C.3 0.93 J K⁻¹ mol⁻¹ 63.9 J K⁻¹ mol⁻¹ 64.8 J K⁻¹ mol⁻¹ 64.8 J K⁻¹ mol⁻¹ at 298 K 62.4 J K⁻¹ mol⁻¹ at 273 K P3C.5 +42.08 J K⁻¹ mol⁻¹ +41.16 kJ mol⁻¹ at 298 K +41.15 J K⁻¹ mol⁻¹ +40.8 kJ mol⁻¹ at 398 K P3C.7 89.0 J K⁻¹ mol⁻¹ at 100 K 173.8 J K⁻¹ mol⁻¹ at 200 K 243.9 J K⁻¹ mol⁻¹ at 300 K P3C.9 a = 2.569 J K⁻⁴ mol⁻¹ b = 2.080 J K⁻² mol⁻¹ S_m(0) + $\frac{a}{3}T^3 + bT$ 11.01 J K⁻¹ mol⁻¹

3D Concentrating on the system

E3D.1(a) $\Delta_r H^{\circ} = -636.6 \text{ kJ mol}^{-1} \quad \Delta_r G^{\circ} = -521.5 \text{ kJ mol}^{-1} \quad \Delta_r H^{\circ} = +53.40 \text{ kJ mol}^{-1}$ $\Delta_r G^{\circ} = +25.8 \text{ kJ mol}^{-1} \quad \Delta_r H^{\circ} = -224.3 \text{ kJ mol}^{-1} \quad \Delta_r G^{\circ} = -178.7 \text{ kJ mol}^{-1}$ **E3D.2(a)** $-480.98 \text{ kJ mol}^{-1}$ **E3D.3(a)** $817.90 \text{ kJ mol}^{-1}$ **E3D.4(a)** $-522.1 \text{ kJ mol}^{-1} +25.78 \text{ kJ mol}^{-1} -178.6 \text{ kJ mol}^{-1}$ **E3D.5(a)** -340 kJ mol^{-1} **P3D.1** $49.9 \text{ bar} \quad 900 \text{ K} \quad +50.7 \text{ J K}^{-1} \quad -11.5 \text{ J K}^{-1} \quad \Delta U_{\text{A}} = +24.0 \text{ kJ} \quad \Delta U_{\text{B}} = 0 \quad +3.46 \times 10^3 \text{ J} \quad 0$ **P3D.3** -47 kJ mol^{-1} **P3D.5** $\Delta_r G_1^{\circ} = +965 \text{ kJ mol}^{-1} \quad \Delta_r G_2^{\circ} = -961 \text{ kJ mol}^{-1} \quad \Delta_r G^{\circ} = +4 \text{ kJ mol}^{-1}$

3E Combining the First and Second Laws

E3E.1(a) -17 J E3E.2(a) -36.5 J K⁻¹ E3E.3(a) -85.40 J E3E.4(a) +10 kJ +1.6 kJ mol⁻¹ E3E.5(a) -1.6 × 10² J mol⁻¹ E3E.6(a) +11 kJ mol⁻¹ P3E.1 $\Delta_r G^e (298 \text{ K}) = -514.38 \text{ kJ mol}^{-1} \quad \Delta_r H^e (298 \text{ K}) = -565.96 \text{ kJ mol}^{-1} \quad \Delta G (375 \text{ K}) = -501 \text{ kJ mol}^{-1}$ P3E.3 22 kJ mol⁻¹ P3E.5 $\left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial V}{\partial S}\right)_p \quad \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T \quad \left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$ P3E.7 $G_m(p_f) = G_m(p_i) + RT \ln\left(\frac{p_f}{p_i}\right) + b(p_f - p_i) \quad V_m = \frac{RT}{p} - \frac{a}{pRT} \quad G_m(p_f) = G_m(p_i) + RT \ln\left(\frac{p_f}{p_i}\right)$

 $\begin{array}{l} \textbf{I3.1} - 20.8 \ \textbf{K} & + 37.1 \ \textbf{J} \ \textbf{K}^{-1} \ \textbf{mol}^{-1} \\ \textbf{I3.3} & + 19.5 \ \textbf{J} \ \textbf{K}^{-1} \ \textbf{mol}^{-1} \end{array}$

4 Physical transformations of pure substances

4A Phase diagrams of pure substances

E4A.1(a) one phase two phases three phases two phases E4A.2(a) 0.71 J E4A.3(a) 4 E4A.4(a) area E4A.5(a) Two phases one phase one phase

4B Thermodynamic aspects of phase transitions

```
E4B.1(a) \Delta \mu(liquid) = -65 J mol<sup>-1</sup> \Delta \mu(solid) = -43 J mol<sup>-1</sup> liquid
E4B.2(a) - 699 \text{ J mol}^{-1}
E4B.3(a) + 70 \text{ J mol}^{-1}
E4B.4(a) 2.71 kPa
E4B.5(a) 15.9 \text{ kJ mol}^{-1} 45.2 \text{ J K}^{-1} \text{ mol}^{-1}
E4B.6(a) 304 K 31.2 °C
E4B.7(a) 20.801 \text{ kJ mol}^{-1}
E4B.8(a) 34.08 kJ mol<sup>-1</sup> 350.4 K 77.30 °C
E4B.9(a) 2.8 \times 10^2 K 8.7 \degreeC
E4B.10(a) 9.6 \times 10^{-5} K
E4B.11(a) 25 \text{ g s}^{-1}
E4B.12(a) Water 1.7 kg Benzene 31 kg Mercury 1.4 g
E4B.13(a) 49 kJ mol<sup>-1</sup> 4.9 \times 10^2 K 2.2 \times 10^2 °C 99 J K<sup>-1</sup> mol<sup>-1</sup>
E4B.14(a) 273 K -0.35 °C
P4B.1 -3.10 kJ mol<sup>-1</sup> 7.62 %
P4B.3 9.08 atm 920 kPa
\textbf{P4B.5} - 22.0 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} \quad -109.9 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} \quad +110 \text{ J} \text{ mol}^{-1}
P4B.7 234.4 K
P4B.9 84 \,^{\circ}\text{C} 38.0 kJ mol<sup>-1</sup>
P4B.11 d ln p/dT = \Delta_{sub}H/RT^2 31.7 kJ mol<sup>-1</sup>
P4B.13 1.31 kPa
P4B.15 T = \left(\frac{1}{T_0} + \frac{R}{\Delta_{\text{vap}}H}\frac{a}{H}\right)^{-1} 363 K 89.6 °C
\mathbf{I4.1} (p/\text{kPa}) = 4.80 + (3.18 \times 10^4) \times [(T/\text{K}) - 278.65] \quad (p/\text{kPa}) = 4.80 \times \exp\left[-3.70 \times 10^3 \left(\frac{1}{T/\text{K}} - \frac{1}{278.65}\right)\right]
(p/kPa) = 4.80 \times \exp\left[-4.98 \times 10^3 \left(\frac{1}{T/K} - \frac{1}{278.65}\right)\right]
```

I4.3 N = 17**I4.5** 1.60×10^4 bar

5 Simple mixtures

5A The thermodynamic description of mixtures

```
E5A.1(a) V_{\rm B} = (35.6774 - 0.91846x + 0.051975x^2) \text{ cm}^3 \text{ mol}^{-1}

E5A.2(a) V_{\rm B} = 17.5 \text{ cm}^3 \text{ mol}^{-1} V_{\rm A} = 18.1 \text{ cm}^3

E5A.3(a) -1.2 \text{ J} \text{ mol}^{-1}

E5A.4(a) +1.2 \text{ J} \text{ K}^{-1} -3.5 \times 10^2 \text{ J}

E5A.5(a) 6.7 \text{ kPa}

E5A.6(a) 886.8 cm<sup>3</sup>

E5A.7(a) 56.3 \text{ cm}^3 \text{ mol}^{-1}

E5A.8(a) 6.4 \cdot 10^3 \text{ kPa}

E5A.9(a) 3.7 \times 10^{-3} \text{ mol} \text{ mm}^{-3}

E5A.10(a) 3.4 \times 10^{-3} \text{ mol} \text{ kg}^{-1} 3.37 \times 10^{-2} \text{ mol} \text{ kg}^{-1}

E5A.11(a) 0.17 \text{ mol} \text{ dm}^{-3}

P5A.3 +4.70 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} +4.711 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} 0.01 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}
```

5B The properties of solutions

```
E5B.1(a) 1.3 × 10<sup>2</sup> kPa
E5B.2(a) 84.9 g mol<sup>-1</sup>
E5B.3(a) 381 g mol<sup>-1</sup>
E5B.4(a) 273.08 K
E5B.5(a) 273.06 K
E5B.6(a) \Delta_{\text{mix}}G = -3.10 \times 10^3 \text{ J} \Delta_{\text{mix}}S = +10.4 \text{ J} \text{ K}^{-1} \Delta_{\text{mix}}H = 0
E5B.7(a) \frac{1}{2} 0.8600
E5B.8(a) 0.137 mol kg<sup>-1</sup> 24.3 g
E5B.9(a) p_{\rm B} = 6.1 Torr p_{\rm A} = 32 Torr p_{\rm tot} = 38 Torr y_{\rm CCl_4} = 0.84 y_{\rm Br_2} = 0.16
E5B.10(a) x_{\text{methylbenzene}} = 0.92 x_{1,2-\text{dimethylbenzene}} = 0.08 y_{\text{methylbenzene}} = 0.97 y_{1,2-\text{dimethylbenzene}} = 0.97
0.03
E5B.11(a) x_{\rm A} = 0.267 x_{\rm B} = 0.733 58.6 kPa
E5B.12(a) ideal y_{\rm A} = 0.830 y_{\rm B} = 0.170
P5B.3 V_{\text{propionicacid}} = 75.6 \text{ cm}^3 \text{ mol}^{-1} V_{\text{THF}} = 99.1 \text{ cm}^3 \text{ mol}^{-1}
P5B.5 –4.64 kJ
P5B.7 1.39 \times 10^4 g mol<sup>-1</sup>
P5B.9 1.25 \times 10^5 g mol<sup>-1</sup> B = 1.23 \times 10^4 mol<sup>-1</sup> dm<sup>3</sup>
P5B.11 \frac{1}{2}
P5B.13 M_{\rm J} = 1.26 \times 10^5 \text{ g mol}^{-1} B = 4.80 \times 10^4 \text{ mol}^{-1} \text{ dm}^3
```

5C Phase diagrams of binary systems: liquids

E5C.1(a) $y_{\rm M} = 0.354$ $y_{\rm M} = 0.811$ E5C.3(a) $x_{\rm P} = 0.150$ $\frac{n_{0.161}}{n_{0.042}} = 9.68$ P5C.1 $y_{\rm B} = 0.91$ $y_{\rm MB} = 0.085$ P5C.3 6.4 kPa $y_{\rm B} = 0.77$ $y_{\rm MB} = 0.23$ $p_{\rm tot} = 4.5$ kPa P5C.5 625 Torr 500 Torr $x_{\rm H} = 0.5$ $y_{\rm H} = 0.3$ $x_{\rm H} = 0.7$ $y_{\rm H} = 0.5$ $\frac{n_{\rm I}}{n_{\rm v}} = 1.1$

5D Phase diagrams of binary systems: solids

E5D.4(a) $x_{\rm B} \approx 0.25$ $T_2 \approx 190 \,^{\circ}\text{C}$ E5D.6(a) 76% $\frac{n_{\rm Ag_3Sn}}{n_{\rm Ag}} = 1.11$ $\frac{n_{\rm Ag_3Sn}}{n_{\rm Ag}} = 1.46$ P5D.3 (species,phases): b(3,2), d(2,2), e(4,3), f(4,3), g(4,3), k(2,2) P5D.5 eutectics: $x_{\rm Si} = 0.056$ at 800 °C, $x_{\rm Si} = 0.402$ at 1268 °C, $x_{\rm Si} = 0.694$ at 1030 °C $\frac{n_{\rm Ca}2Si}{n_{\rm Ca}-richliq} = 0.7$ $\frac{n_{\rm Si}}{n_{\rm Hiq}} = 0.53$ $\frac{n_{\rm Si}}{n_{\rm Ca}Si_2} = 0.67$ P5D.7 $x_1 = 0.167$ $x_2 = 0.805$ $\frac{n_{x=0.805}}{n_{x=0.167}} = 10.6$ 302.5 °C

5E Phase diagrams of ternary systems

D5E.13

E5E.3(a) $x_{CHCl_3} = 0.30$ $x_{CH_3COOH} = 0.20$ $x_{H_2O} = 0.50$ two phase region with phase composition a'_2 being approximately 5 times more abundant than the phase with composition a''_2 **E5E.5(a)** 13 mol dm⁻³ 24 mol dm⁻³

5F Activities

E5F.1(a) 0.5903 E5F.2(a) $a_A = 0.833$ $a_B = 0.125$ $\gamma_A = 0.926$ E5F.3(a) $a_P = 0.498$ $\gamma_P = 1.24$ $a_M = 0.667$ $\gamma_M = 1.11$ E5F.5(a) 0.9 E5F.6(a) 2.74 g 2.92 g E5F.7(a) 0.56 E5F.8(a) B = 1.96I5.3 $K_C = 371$ bar I5.5 56 µg 14 µg 1.7×10^2 µg

6 Chemical equilibrium

6A The equilibrium constant

E6A.1(a) $n_A = 0.90 \text{ mol}$ $n_B = 1.2 \text{ mol}$ E6A.2(a) -64 kJ mol⁻¹ E6A.3(a) exergonic E6A.6(a) $K = 3.24 \times 10^{91}$ $K = 3.03 \times 10^{-5}$ E6A.7(a) 1.4×10^{46} E6A.8(a) -44 kJ mol⁻¹ -33 kJ mol⁻¹ -27 kJ mol⁻¹ -4.4 kJ mol⁻¹ +1.3 kJ mol⁻¹ 5.84× 10^5 5.84 × 10^5 E6A.9(a) 2.85×10^{-6} E6A.10(a) $K = K_c \times (c^{\circ} RT/p^{\circ})$ E6A.11(a) $x_A = 0.087$ $x_B = 0.369$ $x_C = 0.195$ $x_D = 0.347$ 0.32 +2.8 kJ mol⁻¹ E6A.12(a) +12 kJ mol⁻¹ E6A.13(a) -14 kJ mol⁻¹ E6A.14(a) -1.1 × 10^3 kJ mol⁻¹ P6A.1 +4.48 kJ mol⁻¹ 0.101 atm 0.102 bar P6A.3 $n_{H_2} = 6.67 \times 10^{-3}$ mol $n_{L_2} = 0.107$ mol $n_{HI} = 0.787$ mol

6B The response of equilibria to the conditions

```
E6B.1(a) 0.141 13.4
E6B.2(a) -68.26 kJ mol<sup>-1</sup> 9.22 × 10<sup>11</sup> 1.27 × 10<sup>9</sup>
E6B.3(a) 1.5 \times 10^3 K
E6B.4(a) +2.77 kJ mol<sup>-1</sup> -16.5 J K<sup>-1</sup> mol<sup>-1</sup>
E6B.5(a) 50%
E6B.6(a) x_{\text{borneol}} = 0.904 x_{\text{isoborneol}} = 0.096
E6B.7(a) +52.9 kJ mol<sup>-1</sup> -52.9 kJ mol<sup>-1</sup>
E6B.8(a) 1109 K
E6B.9(a) 3.07 -6.48 kJ mol<sup>-1</sup> 70.2 kJ mol<sup>-1</sup> 110 J K<sup>-1</sup> mol<sup>-1</sup>
P6B.1 -92.2 kJ mol<sup>-1</sup>
P6B.3 -\frac{3}{2}R(CT-B) +70.5 J K<sup>-1</sup> mol<sup>-1</sup>
P6B.5 K = 2.79 \times 10^{-6} \Delta_r G^{\circ} = +153 \text{ kJ mol}^{-1} \Delta_r H^{\circ} = +3.00 \times 10^2 \text{ kJ mol}^{-1} \Delta_r S^{\circ} =
+102 \text{ J K}^{-1} \text{ mol}^{-1}
P6B.7 K = 1.35 at 437 K K = 0.175 at 471 K \Delta_r H^{\circ} = -103 kJ mol<sup>-1</sup>
P6B.9 1.2 \times 10^8 2.7 \times 10^3
P6B.11 –225.34 kJ mol<sup>-1</sup>
```

6C Electrochemical cells

6D Electrode potentials

E6D.1(a) 6.4×10^9 1.5×10^{12} **E6D.2(a)** 8.445×10^{-17} **E6D.3(a)** -0.46 V $\Delta_r G^{\circ} = +89$ kJ mol⁻¹ $\Delta_r H^{\circ} = +146.39$ kJ mol⁻¹ $\Delta_r G^{\circ}(308K) = +87$ kJ mol⁻¹ **E6D.4(a)** no **P6D.1** +0.324 V +0.45 V **P6D.3** -0.6111 V -0.22 V +0.4139 V **P6D.5** -324 J K⁻¹ mol⁻¹ -571 kJ mol⁻¹ **I6.1** -77 kJ mol⁻¹ **I6.3** $E_{cell}^{\circ} = 1.0304$ V $\Delta_r G = -236.81$ kJ mol⁻¹ $\Delta_r G^{\circ} = -198.84$ kJ mol⁻¹ $K = 7.11 \times 10^{34}$ $\gamma_{\pm} = 0.761$ $\gamma_{\pm} = 0.750$ $\Delta_r H = -263$ kJ mol⁻¹ $\Delta_r S - 87.2$ J K⁻¹ mol⁻¹ **I6.5** $\gamma_{\pm,1} = 0.501$ $\gamma_{\pm,2} 0.549$ **I6.9** 41% 77% 41% **I6.11** +0.206 V

7 Quantum theory

7A The origins of quantum mechanics

E7A.1(a) 9.7×10^{-6} m E7A.2(a) 580 K E7A.3(a) $(5.49 \times 10^{-2}) \times 3R$ **E7A.4(a)** 6.6×10^{-19} J 4.0×10^{2} kJ mol⁻¹ 6.6×10^{-20} J 40 kJ mol⁻¹ 6.6×10^{-34} J $4.0 \times 10^{-13} \text{ kJ mol}^{-1}$ **E7A.5(a)** 330 zJ 199 kJ mol⁻¹ 360 zJ 217 kJ mol⁻¹ 496 zJ 298 kJ mol⁻¹ **E7A.6(a)** 19.9 km s⁻¹ 20.8 km s⁻¹ 24.4 km s⁻¹ **E7A.7(a)** 2.77×10^{18} 2.77×10^{20} E7A.8(a) no electron ejection 3.19×10^{-19} J 837 km s⁻¹ **E7A.9(a)** 21 m s⁻¹ **E7A.10(a)** $7.27 \times 10^6 \text{ m s}^{-1}$ 150 V **E7A.11(a)** $2.4 \times 10^{-2} \text{ m s}^{-1}$ E7A.12(a) 332 pm **E7A.13(a)** 6.6×10^{-29} m 6.6×10^{-36} m 99.8 pm $\textbf{P7A.1}~1.54 \times 10^{-33}~J~m^{-3} \quad 2.51 \times 10^{-4}~J~m^{-3}$ **P7A.5** 6.54×10^{-34} J s P7A.9 500 nm blue-green

7B Wavefunctions

E7B.1(a) $N = (2/L)^{1/2}$ E7B.2(a) $N = (2a/\pi)^{1/4}$ E7B.3(a) can be normalized cannot be normalized E7B.4(a) 0 E7B.5(a) 1/4 E7B.6(a) length⁻¹ E7B.7(a) cannot be normalized cannot be normalized can be normalized E7B.8(a) Maxima at x = L/4, 3L/4; Node at x = L/2P7B.1 $N = (2\pi)^{-1/2}$ $N = (2\pi)^{-1/2}$ P7B.3 $N = 2/\sqrt{L_x L_y}$ N = 2/LP7B.5 0.0183 P7B.7 2.00 × 10⁻² 6.91 × 10⁻³ 6.58 × 10⁻⁶ 0.5 P7B.9 8.95 × 10⁻⁶ 1.21 × 10⁻⁶ P7B.11 $x = \pm a$

7C Operators and observables

E7C.6(a) L/2E7C.7(a) 0 E7C.8(a) $\pi \pi$ E7C.9(a) 1.05 × 10⁻²⁸ m s⁻¹ 1.05 × 10⁻²⁷ m E7C.10(a) 7.01 × 10⁻¹⁰ m P7C.1 Yes -1 Yes +1 No P7C.7 1/a P7C.11 $\langle x \rangle = 0 \quad \langle x^2 \rangle = 1/4a \quad \langle p_x \rangle = 0 \quad \langle p_x^2 \rangle = \hbar^2 a \quad \Delta x = (4a)^{-1/2} \quad \Delta p_x = \hbar \sqrt{a}$ P7C.13 -1/x² 2x

7D Translational motion

E7D.1(a) 3×10^{-25} kg m s⁻¹ 5×10^{-20} J **E7D.2(a)** $e^{-i(2.7 \times 10^{33} \text{ m}^{-1})x}$ **E7D.3(a)** 1.8×10^{-19} J 1.1×10^{2} kJ mol⁻¹ 1.1 eV 9.1×10^{3} cm⁻¹ 6.6×10^{-19} J 4.0×10^{10} kJ mol⁻¹ 1.1 eV 9.1×10^{3} cm⁻¹ 1.1×10^{2} kJ mol⁻¹ 1.1×10 10^2 kJ mol^{-1} 4.1 eV $3.3 \times 10^4 \text{ cm}^{-1}$ **E7D.5(a)** 0.04 0 **E7D.8(a)** $\lambda_{\rm C}/2$ **E7D.9(a)** L/6, L/2, 5L/6 0, L/3, 2L/3, L E7D.10(a) -0.174 **E7D.11(a)** $n = \frac{2mkTL^2}{h^2} - \frac{1}{2} \quad 1.24 \times 10^{16}$ E7D.12(a) Maxima at (x, y):(L/4, L/4), (L/4, 3L/4), (3L/4, L/4), (3L/4, 3L/4); Nodes at x = L/2 and parallel to the y axis, y = L/2 and parallel to the x axis E7D.13(a) (1,4) E7D.14(a) 3 E7D.15(a) 0.84 **P7D.1** 6.2×10^{-41} J 2.2×10^{9} 1.8×10^{-30} J **P7D.3** $\langle x \rangle = \frac{L}{2} \quad \langle x^2 \rangle = \frac{L^2}{3} - \frac{1}{2\pi^2}$ $\textbf{P7D.5} \ 3.30 \times 10^{-19} \ J \quad 4.98 \times 10^{14} \ Hz \quad lower \quad increases$ **P7D.11** 1.20 × 10⁶ **P7D.15** $n_1 + n_2 - 2$

7E Vibrational motion

E7E.1(a) 4.30×10^{-21} J E7E.2(a) 278 N m⁻¹ E7E.3(a) 2.64×10^{-6} m E7E.5(a) 5.61×10^{-21} J E7E.6(a) 4.09×10^{-20} J 18.1 pm 1.29×10^{-20} J 32.2 pm E7E.7(a) 3 4 E7E.8(a) y = -1, +1E7E.9(a) $y = \pm 1$ P7E.1 4.04×10^{14} Hz 5.63×10^{14} Hz P7E.3 $v_{2H_2} = 93.27$ THz $v_{3H_2} = 76.15$ THz P7E.5 2.99×10^3 cm⁻¹ $k_f = \mu (2\pi \tilde{v}c)^2$ 1902 N m⁻¹ 2080 cm⁻¹ P7E.7 1420 cm⁻¹ P7E.9 $g = (mk_f)^{1/2}/2\hbar$ $E = \frac{1}{2}\hbar (k_f/m)^{1/2}$ P7E.13 P = 0.112P7E.17 v = 0

7F Rotational motion

E7F.1(a) $2^{1/2}\hbar -\hbar, 0, \hbar$ E7F.3(a) $N = (2\pi)^{-1/2}$ E7F.5(a) 3.32×10^{-22} J E7F.6(a) 2.11×10^{-22} J E7F.7(a) 4.22×10^{-22} J E7F.8(a) 1.49×10^{-34} J s E7F.10(a) $3 \quad \theta = \pi/2, \ 0.684, \ 2.46$ E7F.11(a) $\phi = \pi/2, \ 3\pi/2$ yz plane $\phi = 0, \pi$ xz plane E7F.12(a) 7 E7F.14(a) $\theta = \pi/4$ $\theta = 0.420$ P7F.1 7.88 $\times 10^{-19}$ J 5.273 $\times 10^{-34}$ J s 5.23 $\times 10^{14}$ Hz P7F.3 is separable P7F.5 $E_{0,0} = 0$ $E_{2,-1} = 6\hbar^2/2I$ $E_{3,+3} = 12\hbar^2/2I$ $J_{z(0,0)} = 0$ $J_{z(2,-1)} = -\hbar$ $J_{z(3,+3)} = 3\hbar$ I7.1 +74.81 kJ mol⁻¹ +80.8... J K⁻¹ mol⁻¹ T = 812 K 2.9 $\times 10^{-6}$ m 1.84 $\times 10^{-6}$

8 Atomic structure and spectra

8A Hydrogenic Atoms

E8A.1(a) 1 9 25 **E8A.2(a)** $N = (a_0^3 \pi)^{-1/2}$ **E8A.3(a)** $Z^3/(8\pi a_0^3)$ **E8A.4(a)** $r = 4a_0/Z$ E8A.5(a) 0.347a0 **E8A.6(a)** $r = (3 \pm \sqrt{3})(3a_0/2Z)$ **E8A.7(a)** $\theta = \pi/2$ $\phi = \pi/2$ **E8A.8(a)** $(3 + \sqrt{5})(a_0/Z)$ **E8A.9(a)** $4a_0/Z$ E8A.10(a) 3 subshells 9 orbitals E8A.12(a) 0 **P8A.1** x = 0, y = 0, $z = 2a_0/Z$ **P8A.3** -2.17927×10^{-18} J **P8A.5** Radial nodes: 3s at $r = (3a_0/2Z)(3 \pm \sqrt{3})$, 3p at $r = 6a_0/Z$, 3d none Anuglar nodes: 3s none, 3p *yz* plane, 3d *xz* and *yz* plane $\langle r \rangle = (27a_0)/(2Z)$ **P8A.7** $\sigma = 2.66a_0$ **P8A.9** $-\frac{Z^2 e^4 m_e^3}{32\pi^2 \varepsilon_0^2 \hbar^2} \times \frac{1}{n^2}$ **P8A.11** $2a_{0,H} = \frac{1}{2}E_{h,H}$

8B Many-electron atoms

E8B.2(a) 14 E8B.4(a) [Ar] 3d⁸ E8B.5(a) Li P8B.1 *a*₀/126

8C Atomic spectra

E8C.1(a) $n_2 = 2$ $n_2 = \infty$ **E8C.2(a)** 3.29×10^5 cm⁻¹ 30.4 nm 9.87 PHz **E8C.3(a)** forbidden allowed allowed **E8C.4(a)** ${}^2P_{1/2}$, ${}^2P_{3/2}$ **E8C.5(a)** $j = \frac{5}{2}$, $\frac{3}{2}$ $j = \frac{7}{2}$, $\frac{5}{2}$ **E8C.6(a)** l = 1

```
E8C.7(a) L = 2 S = 0 J = 2
E8C.8(a) S = 1, 0 = 3, 1 = S = \frac{3}{2}, \frac{1}{2} = 4, 1
E8C.9(a) M_S = 0 S = 0 M_S = 0, \pm 1 S = 1
E8C.10(a) <sup>3</sup>D<sub>3</sub>, <sup>3</sup>D<sub>2</sub>, <sup>3</sup>D<sub>1</sub>, <sup>1</sup>D<sub>2</sub> <sup>3</sup>D<sub>1</sub>
E8C.11(a) J = 0 1 J = \frac{3}{2}, \frac{1}{2} 4 2 J = 2, 1, 0 5, 3, 1
E8C.12(a) {}^{2}S_{1/2} {}^{2}P_{3/2}, {}^{2}P_{1/2}
E8C.13(a) -(3/2)hc\tilde{A} + hc\tilde{A}
E8C.14(a) allowed forbidden allowed
P8C.1 n_1 = 6 for n_2 = 8, 9 and 10 \lambda = 7502.5 nm, 5908.3 nm and 5128.7 nm
P8C.3 \tilde{v}_{3\to 2}(^{4}\text{He}^{+}) = 60\,956.8\,\text{cm}^{-1} \tilde{v}_{3\to 2}(^{3}\text{He}^{+}) = 60\,954.1\,\text{cm}^{-1} \tilde{v}_{2\to 1}(^{4}\text{He}^{+}) = 329\,167\,\text{cm}^{-1}
\tilde{v}_{2\to 1}(^{3}\text{He}^{+})=329\,152\,\text{cm}^{-1}
P8C.5 5.39 eV
P8C.7 \tilde{A} = 38.5 cm<sup>-1</sup>
P8C.9 7 621 cm<sup>-1</sup> 10 288 cm<sup>-1</sup> 11 522 cm<sup>-1</sup> 6.803 eV
P8C.11 \Delta l = \pm 1, \Delta m_l = \pm 1
\mathbf{I8.1}^{\,2}\mathrm{S}_{1/2} \rightarrow {}^{2}\mathrm{P}_{1/2} \quad {}^{2}\mathrm{S}_{1/2} \rightarrow {}^{2}\mathrm{P}_{3/2} \quad 411\,289\,\mathrm{cm}^{-1} \quad 24.313\,8\,\mathrm{nm} \quad 1.233\,01 \times 10^{16}\,\mathrm{Hz} \quad 43a_{0}/4
I8.3 17.9 T m<sup>-1</sup>
```

9 Molecular Structure

9A Valence-bond theory

9B Molecular orbital theory: the hydrogen molecule-ion

E9B.1(a) $N = 1/(1 + \lambda^2 + 2\lambda S)^{1/2}$ **E9B.2(a)** $\psi_i = 0.163A + 0.947B$ $\psi_j = 1.02A - 0.412B$ **E9B.3(a)** $R = 2.5 a_0$ 2.0 eV **P9B.1** 1.87×10^6 J mol⁻¹ 1.52×10^{-30} J mol⁻¹

9C Molecular orbital theory: homonuclear diatomic molecules

E9C.1(a) 1 0 2 **E9C.4(a)** In order of increasing atomic number: 1, 0, 1, 2, 3, 2, 1, 0 **E9C.6(a)** 3.70×10^5 m s⁻¹ **P9C.1** $R/a_0 = 8.03$ 0.29

9D Molecular orbital theory: heteronuclear diatomic molecules

E9D.5(a) $\alpha_{\rm H} = -7.18 \text{ eV}$ $\alpha_{\rm Cl} = -8.29 \text{ eV}$ **E9D.6(a)** $E_{-} = -8.88 \text{ eV}$ $E_{+} = -6.59 \text{ eV}$ **E9D.7(a)** $E_{-} = -8.65 \text{ eV}$ $E_{+} = -7.05 \text{ eV}$

9E Molecular orbital theory: polyatomic molecules

E9E.2(a) $7\alpha + 7\beta$ $5\alpha + 7\beta$ **E9E.3(a)** $E_{deloc} = 0$ $E_{bf} = 7\beta$ $E_{deloc} = 2\beta$ $E_{bf} = 7\beta$ **E9E.5(a)** $14\alpha + 19.3\beta$ $14\alpha + 19.5\beta$ **P9E.7** $\alpha + 2\beta$ $\alpha - \beta$ (doubly degenerate) $E_{tot,H_3^+} = 2\alpha + 4\beta$ $E_{tot,H_3} = 3\alpha + 3\beta$ $E_{tot,H_3^-} = 4\alpha + 2\beta$ -417 kJ mol⁻¹ -208 kJ mol⁻¹ $E_{tot,H_3^+} = 2\alpha - 834$ kJ mol⁻¹ $E_{tot,H_3} = 3\alpha - 625$ kJ mol⁻¹ $E_{tot,H_3^-} = 4\alpha - 416$ kJ mol⁻¹ **P9E.11** -4.96 eV 1.52β

9E Integrated activities

I9.5 E_{LUMO} / V in order presented: 0.078, 0.023, -0.067, -0.165, -0.260 -2.99 eV -0.25 V -3.11 eV -0.18 V

10 Molecular symmetry

10A Shape and symmetry

E10A.2(a) D_{2h} E10A.3(a) $R_3 \quad C_{2v} \quad D_{3h} \quad D_{\infty h}$ E10A.4(a) $C_{2v} \quad D_{3h} \quad C_{3v} \quad D_{2h}$ E10A.5(a) $C_{2v} \quad C_{2h}$ P10A.1 D_{3d} Chair: D_{3d} Boat: $C_{2v} \quad D_{2h} \quad D_3 \quad D_{4d}$ P10A.3 Ethene: D_{2h} Allene: $D_{2d} \quad D_{2d} \quad D_2 \quad D_2$ P10A.5 $D_{2h} \quad C_{2h} \quad C_{2v}$

10B Group theory

$$\mathbf{E10B.1(a)} \ \boldsymbol{D}(\sigma_{\rm h}) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
$$\mathbf{E10B.2(a)} \ \boldsymbol{D}(\sigma_{\rm h}) \ \boldsymbol{D}(C_3) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} S_3 \text{ operation}$$
$$\mathbf{E10B.5(a)} \ A_2'' \quad \mathbf{E}' \quad \mathbf{A}_1' \quad \mathbf{E}' \quad \mathbf{E}'$$
$$\mathbf{E10B.6(a)} \text{ three}$$

E10B.7(a) two **P10B.9** $A_1 \quad B_2 \quad B_1 \quad A_1 \quad B_2 \quad B_1 \quad A_2$

10C Applications of symmetry

E10C.1(a) zero E10C.2(a) forbidden E10C.4(a) 2s $2p_z 2p_y d_{z^2} d_{x^2-y^2} d_{yz}$ E10C.5(a) none of them d_{xy} E10C.6(a) B₁, B₂, and A₁ x, y and z polarised light respectively E10C.7(a) 2A₁ + B₁ + E E10C.8(a) A_{1g} + B_{1g} + E_u E10C.9(a) A_{2u} or E_{1u} B_{3u}, B_{2u}, or B_{1u} P10C.1 A₁ + T₂ 2s p_x, p_y, and p_z d_{xy}, d_{yz}, and d_{zx} P10C.3 not necessarily vanish

P10C.5 none **P10C.7** $\psi^{(A_{1g})} = \frac{1}{4}(s_A + s_B + s_C + s_D) \quad \psi^{(B_{2u})} = \frac{1}{4}(s_A + s_B - s_C - s_D) \quad \psi^{(B_{3u})} = \frac{1}{4}(s_A - s_B - s_C + s_D) \quad \psi^{(B_{1g})} = \frac{1}{4}(s_A - s_B + s_C - s_D) \quad \psi^{(B_{1u})} = 0$

11 Molecular Spectroscopy

11A General features of molecular spectroscopy

E11A.1(a) 0.0469 J s m⁻³ 1.33×10^{-13} J s m⁻³ 4.50×10^{-16} J s m⁻³ El1A.2(a) 82.9% **EllA.3(a)** 5.34×10^3 dm³ mol⁻¹ cm⁻¹ EllA.4(a) 1.09 mM **EllA.5(a)** 449 dm³ mol⁻¹ cm⁻¹ **EllA.6(a)** $\varepsilon = 1.6 \times 10^2 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ T = 23%**El1A.7(a)** 0.875 m 2.90 m **EllA.8(a)** $1.34 \times 10^8 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-2}$ **E11A.9(a)** 0.151 cm^{-1} EllA.10(a) 680 nm EllA.ll(a) 27 ps 2.7 ps **E11A.12(a)** 53 cm^{-1} 0.53 cm⁻¹ **P11A.1** 4.4×10^3 **P11A.5** $1.26 \times 10^{6} \text{ dm}^{3} \text{ mol}^{-1} \text{ cm}^{-2}$ **P11A.7** 2.42×10^5 dm³ mol⁻¹ cm⁻² 0.18 A = 6.35 123 dm³ mol⁻¹ cm⁻¹ **P11A.9** 2.301 × 10⁶ m s⁻¹ 7.15 × 10⁵ K **P11A.11** $\tau = 1/z$ 0.70 GHz 569 Pa 4.27 Torr

11B Rotational spectroscopy

E11B.1(a) $6.33 \times 10^{-46} \text{ kg m}^2$ 0.442 cm⁻¹ E11B.4(a) $R_{CH} = 0.1062 \text{ nm}$ $R_{CN} = 0.1157 \text{ nm}$ E11B.5(a) $2.073 \times 10^{-4} \text{ cm}^{-1}$ 0.25 E11B.6(a) HCl, CH₃Cl and CH₂Cl₂ E11B.7(a) 10.2 cm^{-1} 307 GHz E11B.8(a) 125.7 pm E11B.9(a) $4.4420 \times 10^{-47} \text{ kg m}^2$ 165.9 pm E11B.10(a) 20 23 E11B.11(a) H₂, HCl, CH₃Cl E11B.12(a) 20475 cm⁻¹ E11B.13(a) 198.9 pm E11B.14(a) $\frac{5}{3}$ P11B.3 596 GHz 19.9 cm⁻¹ P11B.7 $R_{OC} = 0.1167 \text{ nm}$ $R_{CS} = 0.1565 \text{ nm}$ P11B.9 $B = 4293.28 \pm 0.03 \text{ MHz}$ $J_{max} = 26 \text{ at } 298 \text{ K}$ $J_{max} = 15 \text{ at } 100 \text{ K}$

P11B.11 $J_{\text{max}} = (kT/2hc\tilde{B})^{1/2} - \frac{1}{2}$ 30 $J_{\text{max}} = (kT/hc\tilde{B})^{1/2} - \frac{1}{2}$ 6

11C Vibrational spectroscopy of diatomic molecules

El1C.1(a) 16 N m⁻¹ EllC.2(a) 1.077% **E11C.3(a)** 328.7 N m⁻¹ **E11C.4(a)** $k_{f,^{1}H^{19}F} = 967.0 \text{ Nm}^{-1}$ $k_{f,^{1}H^{35}Cl} = 515.6 \text{ Nm}^{-1}$ $k_{f,^{1}H^{81}Br} = 411.7 \text{ Nm}^{-1}$ $k_{f_1^{-1}H^{127}I} = 314.2 \text{ N m}^{-1}$ E11C.5(a) 0.0670 0.200 **E11C.6(a)** 1580.4 cm⁻¹ 7.65×10^{-3} **E11C.7(a)** $4.14 \times 10^4 \text{ cm}^{-1}$ 5.14 eV **E11C.8(a)** 2347.2 cm⁻¹ **P11C.5** 5.15 eV 5.20 eV **P11C.7** $\tilde{v} = 1.5 \text{ cm}^{-1}$ $k_{\rm f} = 2.7 \times 10^{-4} \text{ N m}^{-1}$ $I = 2.93 \times 10^{-46} \text{ kg m}^2$ $\tilde{B} = 0.96 \text{ cm}^{-1}$ $\tilde{v} = 2.9 \text{ cm}^{-1}$ $x_e = 0.96$ **P11C.9** $x_e \tilde{v} = 13.7 \text{ cm}^{-1}$ $\tilde{v} = 2\,170.7 \text{ cm}^{-1}$ **P11C.11** $r_{\rm CC}$ = 121.0 pm $r_{\rm CH}$ = 105.5 pm PIIC.13 $1/\langle R \rangle^2 = 1/R_e^2 \quad \frac{1}{R_e^2} \left(1 - \frac{\langle x^2 \rangle}{R_e^2} \right) \quad \frac{1}{R_e^2} \left(1 + \frac{3\langle x^2 \rangle}{R_e^2} \right)$ PIIC.15 $\tilde{B}_0 = 0.27877 \text{ cm}^{-1} \quad \tilde{B}_1 = 0.27691 \text{ cm}^{-1} \quad \tilde{v}_P(3) = 602.292 \text{ cm}^{-1} \quad \tilde{v}_R(3) =$ 606.170 cm⁻¹ $\tilde{D}_{=}2.93 \times 10^4$ cm⁻¹ = 3.64 eV **PIIC.17** $\tilde{v} = 2143.26 \text{ cm}^{-1}$ 12.82 kJ mol⁻¹ 1856 N m⁻¹ $\tilde{B} = 1.914 \text{ cm}^{-1}$ 113.3 pm **P11C.19** $\tilde{v}_{S}(J) - \tilde{v}_{O}(J) = 8\tilde{B}_{1}(J + \frac{1}{2})$ $\tilde{v}_{S}(J - 2) - \tilde{v}_{O}(J + 2) = 8\tilde{B}_{0}(J + \frac{1}{2})$

11D Vibrational spectroscopy of polyatomic molecules

E11D.1(a) HCl, CO₂, and H₂O **E11D.2(a)** 3 6 12 **E11D.3(a)** 127 **E11D.4(a)** $\frac{1}{2}(\tilde{v}_1 + \tilde{v}_2 + \tilde{v}_3)$ **E11D.6(a)** infrared inactive Raman active **E11D.7(a)** does not apply

11E Symmetry analysis of vibrational spectroscopy

E11E.1(a) $4A_1 + A_2 + 2B_1 + 2B_2$ **E11E.2(a)** all **E11E.3(a)** All All **P11E.1** C_{3v} 9 $3A_1 + 3E$ All All

11F Electronic spectra

E1IF.1(a) ${}^{1}\Sigma_{g}^{+}$ E1IF.2(a) ${}^{2}\Sigma_{g}^{+}$ E1IF.3(a) 1 3 u E1IF.5(a) $I^{2} = e^{-ax_{0}^{2}/2}$ E1IF.6(a) $I^{2} = (1/32)(3 + 4/\pi)^{2}$ E1IF.7(a) $\frac{\tilde{B}' + \tilde{B}}{2(\tilde{B}' - \tilde{B})}$ E1IF.8(a) R branch J = 7E1IF.9(a) 30 cm⁻¹ to 40 cm⁻¹ increased E1IF.10(a) 1.43×10^{4} cm⁻¹ 1.77 eV E1IF.11(a) $\frac{3}{8} \left(\frac{a^{3}}{b - a/2}\right)^{1/2}$ E1IF.12(a) $a/(4 \times 2^{1/2})$ P1IF.1 neither P1IF.3 4.936 × 10⁴ cm⁻¹

11G Decay of excited states

P11G.3 $n \times 150$ MHz 150 MHz **P11G.5** $P_{\text{peak}} = 33$ MW $P_{\text{av}} = 1.0$ W

11G Integrated activities

III.1 spherical rotor symmetric rotor linear rotor asymmetric rotor symmetric rotor

III.5 $R_{\text{Hg}^{35}\text{Cl}_2} = 229 \text{ pm}$ $R_{\text{Hg}^{79}\text{Br}_2} = 241 \text{ pm}$ $R_{\text{Hg}^{127}\text{I}_2} = 253 \text{ pm}$ **III.7** $\Delta \tilde{T}_e = 25759.8 \text{ cm}^{-1}$ $\tilde{\nu}_0 = 2034.1 \text{ cm}^{-1}$ $\tilde{\nu}_1 = 2114.2 \text{ cm}^{-1}$ $\tilde{\nu}_1 - \tilde{\nu}_0 = 80.1 \text{ cm}^{-1}$ $n_1/n_0 = 0.1$ $T = 1.3 \times 10^3 \text{ K}$ **III.11** $1.25 \times 10^6 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-2}$ A_1 B_1 B_2

12 Magnetic resonance

12A General principles

E12A.1(a) $T^{-1} s^{-1}$ E12A.2(a) $\sqrt{3}\hbar/2 \pm \frac{1}{2}\hbar \pm 0.9553 \text{ rad} = \pm 54.74^{\circ}$ E12A.3(a) 575 MHz E12A.4(a) $E_{\pm 3/2} = \pm 2.210 \times 10^{-26}$ J and $E_{\pm 1/2} = \pm 7.365 \times 10^{-27}$ J E12A.5(a) 165 MHz E12A.6(a) ³¹P E12A.7(a) $1.0 \times 10^{-6} 5.1 \times 10^{-6} 3.4 \times 10^{-5}$ E12A.8(a) 5 E12A.9(a) 1.3 T P12A.1 210 MHz $m_I = -\frac{1}{2} 1.65 \times 10^{-5}$ P12A.3 6.81% 26.2 I_{13C}

12B Features of NMR spectra

E12B.1(a) 5.0 E12B.2(a) 1.5 E12B.3(a) 3040 Hz E12B.4(a) 1.37 E12B.5(a) 11 μ T 110 μ T E12B.9(a) 1:4:6:4:1 quintet E12B.11(a) 1:2:3:4:5:6:5:4:3:2:1 multiplet E12B.14(a) 2.6 × 10³ s⁻¹

12C Pulse techniques in NMR

E12C.1(a) 9.40×10^{-4} T 6.25 µs E12C.2(a) 0.21 s E12C.3(a) 1.4 s E12C.5(a) 1.234 P12C.1 $\Delta \tau_{90} = 5.0$ µs 5.00×10^4 Hz P12C.7 0.500 s P12C.9 $M_{xy}(\tau) = M_{xy}(0)e^{-\tau/T_2}$ 50.0 ms P12C.11 158 pm

12D Electron paramagnetic resonance

```
E12D.1(a) 2.0022

E12D.2(a) a = 2.3 \text{ mT} 2.0025

E12D.3(a) 330.2 mT 332.8 mT 332.2 mT 334.8 mT equal intensity

E12D.4(a) 1:3:3:1 1:3:6:7:6:3:1

E12D.5(a) 332.3 mT 1.206 T

E12D.6(a) I = \frac{3}{2}

P12D.1 2.8 × 10<sup>13</sup> Hz molecular vibrations

P12D.3 a_{.CD_3} = 0.35 \text{ mT} width \cdot CD_3 = 6.9 \text{ mT} width \cdot CD_3 = 2.1 \text{ mT}

P12D.5 C_1 = 0.122 C_2 = 0.067 C_9 = 0.237

P12D.7 10% 38% 48% 52% \lambda = 1.95 \theta = 105^{\circ}

I12.3 k_{1st,60MHz} = 160 \text{ s}^{-1} k_{1st,300MHz} = 800 \text{ s}^{-1} 56 kJ mol<sup>-1</sup>
```

13 Statistical thermodynamics

13A The Boltzmann distribution

E13A.1(a) 21 621 600 E13A.2(a) 40 320 5.63×10^3 3.99×10^4 E13A.3(a) 1 E13A.4(a) 524 K E13A.5(a) 7.43 E13A.6(a) 354 K P13A.1 { N_0,N_1,N_2,N_3,N_4,N_5 } = {2,2,0,1,0,0} or {2,1,2,0,0,0} P13A.3 { $N_0,N_1,N_2,N_3,N_4,N_5,N_6,N_7,N_8,N_9,N_{10}$ }={12,6,2,0,0,0,0,0,0,0,0} $T = \varepsilon/(0.795k)$ P13A.5 $T_{\text{electronic}} = 420$ K not in equilibrium P13A.7 0.36 for O₂ 0.57 for H₂O

13B Partition functions

E13B.1(a) 8.23×10^{-12} m 1.78×10^{27} at 300 K 2.60×10^{-12} m 5.67×10^{28} at 3000 K E13B.2(a) 0.358 E13B.3(a) 72.1 **E13B.4(a)** 7.97×10^3 1.12×10^4 E13B.5(a) 18 K E13B.6(a) 37 K **E13B.7(a)** $\sigma = 1$ $\sigma = 2$ $\sigma = 2$ $\sigma = 12$ $\sigma = 3$ E13B.8(a) 660.6 E13B.9(a) 4500 K E13B.10(a) 2.57 E13B.11(a) 42.1 E13B.12(a) 4.291 1 : 0.0376 : 0.0353 **P13B.5** 5.00 6.262 $\left(\frac{N_0}{N}\right)_{298 \text{ K}} = 1.00 \left(\frac{N_2}{N}\right)_{298 \text{ K}} = 6.54 \times 10^{-11} \left(\frac{N_0}{N}\right)_{5000 \text{ K}} = 0.798 \left(\frac{N_2}{N}\right)_{5000 \text{ K}} = 0.798$ 0.122 **P13B.7** 1.209 at 298 K 3.003 at 1000 K P13B.9 4.5 K

13C Molecular energies

E13C.1(a) 8.15 × 10⁻²² J **E13C.2(a)** 19.6 K **E13C.3(a)** 26.4 K E13C.4(a) 4.80×10^{3} K E13C.5(a) 1.10×10^{4} K E13C.6(a) 6.85×10^{3} K E13C.7(a) 4.03×10^{-21} J P13C.1 4.59 K P13C.3 2.5 kJ P13C.5 $-\delta + \frac{\delta e^{-\beta\delta} + 2\delta e^{-2\beta\delta}}{1 + e^{-\beta\delta} + e^{-2\beta\delta}}$ P13C.7 $\frac{N_{0}}{N} = 0.641$ $\frac{N_{1}}{N} = 0.359$ 8.63×10^{-22} J P13C.9 $\left(\frac{1}{q}\frac{d^{2}q}{d\beta^{2}}\right)^{1/2}$ $\frac{1}{q}\left(q\frac{d^{2}q}{d\beta^{2}} - \left(\frac{dq}{d\beta}\right)^{2}\right)^{1/2}$ $\frac{hc\tilde{v}e^{-\beta hc\tilde{v}/2}}{1 - e^{-\beta hc\tilde{v}}}$

13D The canonical ensemble

13E The internal energy and entropy

EI3E.1(a) $\frac{7}{2}R$ 3 R 3 R EI3E.2(a) Without vibrational contribution: $\gamma_{NH_3} = 1.33$ $\gamma_{CH_4} = 1.33$ With vibrational contribution: $\gamma_{NH_3} = 1.11$ $\gamma_{CH_3} = 1.08$ EI3E.3(a) 1.96 J K⁻¹ mol⁻¹ 1.60 J K⁻¹ mol⁻¹ EI3E.4(a) $C_{V,m} = 14.95$ J K⁻¹ mol⁻¹ $C_{V,m} = 25.62$ J K⁻¹ mol⁻¹ EI3E.5(a) 126 J K⁻¹ mol⁻¹ 169.7 J K⁻¹ mol⁻¹ EI3E.6(a) 2.42 × 10³ K EI3E.7(a) 43.1 43.76 J K⁻¹ mol⁻¹ EI3E.8(a) 19.14 J K⁻¹ mol⁻¹ EI3E.9(a) $S_m^V = 4.18$ J K⁻¹ mol⁻¹ $S_m^V = 14.3$ J K⁻¹ mol⁻¹ PI3E.3 $q^R = \left(\frac{2\pi I}{\beta\hbar^2}\right)^{1/2}$ $C_{V,m}^R = \frac{1}{2}R$ 24.1 J K⁻¹ mol⁻¹ PI3E.5 28 31R PI3E.11 216.1 J K⁻¹ mol⁻¹ PI3E.5 R ln $\frac{A_m e^2}{\Lambda^2 N_A}$ R ln $\frac{A_m \Lambda}{V_m e^{1/2}}$ PI3E.17 9.6 × 10⁻¹⁵ J K⁻¹

13F Derived functions

E13F.1(a) $G_m^R = -13.83 \text{ kJ mol}^{-1}$ $G_m^V = -0.204 \text{ kJ mol}^{-1}$ **E13F.2(a)** $-5.92 \text{ kJ mol}^{-1}$ $-11.2 \text{ kJ mol}^{-1}$ **E13F.3(a)** 3.72×10^{-3} **P13F.3** 100 T

P13F.5 -45.8 kJ mol⁻¹ **I13.1** 660.6 4.26×10^4

14 Molecular Interactions

14A Electric properties of molecules

```
E14A.2(a) 1.4 D

E14A.3(a) 37 D 12°

E14A.4(a) 1.2 \times 10^4 V m<sup>-1</sup>

E14A.5(a) 1.659 D 1.008 × 10<sup>-39</sup> C<sup>2</sup> m<sup>2</sup> J<sup>-1</sup>

E14A.6(a) 4.75

E14A.7(a) 1.42 × 10<sup>-39</sup> C<sup>2</sup> m<sup>2</sup> J<sup>-1</sup>

E14A.8(a) 1.3

E14A.9(a) 1.3

E14A.9(a) 17.8

P14A.1 1,2 isomer: 0.7 D 1,3 isomer: 0.4 D 1,4 isomer: 0

P14A.5 1.11 \muD

P14A.7 0.79 D 1.3 × 10<sup>-23</sup> cm<sup>3</sup>

P14A.9 1.582 D 2.197 × 10<sup>-24</sup> cm<sup>3</sup> 5.73 cm<sup>3</sup> mol<sup>-1</sup> 1.57 D

P14A.11 P<sub>m</sub> = 8.14 cm<sup>3</sup> mol<sup>-1</sup> \varepsilon_r = 1.75 n_r = 1.32
```

14B Interactions between molecules

E14B.1(a) 1.77×10^{-18} J 1.07×10^{3} kJ mol⁻¹ E14B.2(a) -1.3×10^{-23} J -8.1 J mol⁻¹ E14B.3(a) $\frac{6Q^{2}l^{4}}{\pi\epsilon_{0}r^{5}}$ E14B.4(a) -1.0×10^{-22} J -62 J mol⁻¹ E14B.5(a) -2.1 J mol⁻¹ E14B.6(a) 0.071 J mol⁻¹ P14B.1 -1.2×10^{-20} J -7.5 kJ mol⁻¹ -1.6×10^{-22} J -94 J mol⁻¹ P14B.3 2.1 nm P14B.5 -1.1 kJ mol⁻¹ P14B.7 $-9\alpha_{1}\alpha_{2}\frac{I_{1}I_{2}}{I_{1}+I_{2}}\frac{1}{r^{7}}$

14C Liquids

```
E14C.1(a) 2.6 kPa
E14C.2(a) 72.8 mN m<sup>-1</sup>
E14C.3(a) 728 kPa
E14C.4(a) 72.0 mN m<sup>-1</sup>
```

14D Macromolecules

E14D.1(a) $\overline{M}_n = 70 \text{ kg mol}^{-1}$ $\overline{M}_W = 71 \text{ kg mol}^{-1}$ E14D.2(a) 24 nm E14D.3(a) $R_c = 3.07 \text{ µm}$ $R_{rms} = 30.8 \text{ nm}$ E14D.4(a) 2.2 × 10³ E14D.5(a) 0.013 E14D.6(a) 6.4×10^{-3} E14D.7(a) +40.1% +176% E14D.8(a) +895% +(9.84 × 10⁴)% E14D.9(a) 0.16 nm E14D.10(a) $1.8 \times 10^{-14} \text{ N}$ E14D.11(a) -0.019 J K⁻¹ mol⁻¹ P14D.1 $R_g = (3/5)^{1/2} a$ $R_{g,\parallel} = (2)^{-1/2} a$ $R_{g,\perp} = (a^2/4 + l^2/12)^{1/2}$ $R_g = 2.40 \text{ nm}$ $R_{g,\parallel} = 0.35 \text{ nm}$ $R_{g,\perp} = 46 \text{ nm}$

14E Self-assembly

E14E.1(a) 4.9 **P14E.1** 3.5 slope = -1.49 intercept = -1.95 $K_1 = 0.011$ **I14.5** $b_0 = 3.59$ $b_1 = 0.957$ $b_2 = 0.362$ -1.72

15 Solids

15A Crystal structure

E15A.1(a) N = 4 4.01 g cm⁻³ E15A.2(a) (323) and (110) E15A.3(a) $d_{112} = 229$ pm $d_{110} = 397$ pm $d_{224} = 115$ pm E15A.4(a) 220 pm P15A.1 3.61×10^5 g mol⁻¹ P15A.3 $(\sqrt{3}/2)a^2c$ P15A.5 b = 605.8 pm a = 834.2 pm c = 870.0 pm P15A.7 4 P15A.9 $\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$

15B Diffraction techniques

E15B.1(a) 70.7 pm E15B.2(a) 10.1° 14.3° 17.6° E15B.3(a) 8.17° , 4.82° and 11.8° E15B.4(a) 2.14° E15B.5(a) f(0) = 36E15B.6(a) $F_{hkl} = f$ E15B.7(a) for (h + k) odd $F_{hkl} = -f$ for (h + k) even $F_{hkl} = 3f$ E15B.11(a) 6.1 km s^{-1} E15B.12(a) 233 pmP15B.1 118 pm P15B.3 cubic F lattice 408.55 pm 10.51 g cm^{-3}

15C Bonding in solids

E15C.1(a) 0.9069 E15C.2(a) 0.5236 0.6802 0.7405 E15C.3(a) 75.0 pm 133 pm E15C.4(a) expand by 1.6% E15C.5(a) 3500 kJ mol⁻¹ P15C.1 0.3401 P15C.3 7.655 g cm⁻³

15D The mechanical properties of solids

E15D.1(a) 34.3 MPa E15D.2(a) 1.6×10^2 MPa 3.6% E15D.3(a) 9.3×10^{-4} cm³

15E The electrical properties of solids

E15E.1(a) 0.269 E15E.2(a) 1.03 eV E15E.3(a) n-type

15F The magnetic properties of solids

E15F.1(a) three E15F.2(a) $-6.4 \times 10^{-11} \text{ m}^3 \text{ mol}^{-1}$ E15F.3(a) 4.3 E15F.4(a) $1.59 \times 10^{-8} \text{ m}^3 \text{ mol}^{-1}$ E15F.5(a) 95 kA m⁻¹ P15F.1 For $S = 2 \chi_m = 1.27 \times 10^{-7} \text{ m}^3 \text{ mol}^{-1}$ $S = 3 \chi_m = 2.54 \times 10^{-7} \text{ m}^3 \text{ mol}^{-1}$ $S = 4 \chi_m = 4.23 \times 10^{-7} \text{ m}^3 \text{ mol}^{-1}$ $2.54 \times 10^{-7} \text{ m}^3 \text{ mol}^{-1}$

15G The optical properties of solids

E15G.1(a) 3.54 eV P15G.1 $\mu_{\dim,\Psi_+} = (1+S)^{-1/2}\mu_{mon}$ $\mu_{\dim,\Psi_-} = 0$ I15.1 4.811 × 10⁻⁵ K⁻¹

16 Molecules in motion

16A Transport properties of a perfect gas

E16A.1(a) 1.9×10^{20} **E16A.2(a)** $1.48 \text{ m}^2 \text{ s}^{-1} - 60.6 \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-4} \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-4} \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-4} \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-4} \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-4} \text{ mol m}^{-2} \text{ s}^{-1} = 1.48 \times 10^{-5} \text{ m}^2 \text{ m}^2$ $10^{-7} \text{ m}^2 \text{ s}^{-1} - 6.06 \times 10^{-6} \text{ mol m}^{-2} \text{ s}^{-1}$ **E16A.3(a)** $7.6 \times 10^{-3} \text{ J K}^{-1} \text{ m}^{-1} \text{ s}^{-1}$ **E16A.4(a)** 0.0795 nm² **E16A.5(a)** $-0.078 \text{ Jm}^{-2} \text{ s}^{-1}$ E16A.6(a) 103 W **E16A.7(a)** 1.79×10^{-5} kg m⁻¹ s⁻¹ 1.87×10^{-5} kg m⁻¹ s⁻¹ 3.43×10^{-5} kg m⁻¹ s⁻¹ **E16A.8(a)** 0.201 nm² E16A.9(a) 104 mg **E16A.10(a)** 2.15×10^3 Pa **E16A.11(a)** 43.0 g mol^{-1} E16A.12(a) 1.3 days **P16A.1** 437 pm *d* = 366 pm $\textbf{P16A.3} \ 1.37 \times 10^{17} \ m^2 \ s^{-1} \quad 2.84 \ J \ K^{-1} \ m^{-1} \ s^{-1}$ **P16A.5** 1.7×10^{14} 1.1×10^{16}

16B Motion in liquids

E16B.1(a) 16.9 kJ mol⁻¹ E16B.2(a) 13.87 mS m² mol⁻¹ E16B.3(a) $u_{Li^+} = 4.01 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ $u_{Na^+} = 5.19 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ $u_{K^+} = 7.62 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ E16B.4(a) 7.63 mS m² C⁻¹ E16B.5(a) 283 µm s⁻¹ E16B.6(a) 1.90 × 10⁻⁹ m² s⁻¹ P16B.1 10.15 kJ mol⁻¹ P16B.3 $\mathcal{K} = 2.53 \text{ mS m}^2 (\text{mol dm}^{-1})^{-3/2}$ $\Lambda_m^{\circ} = 12.7 \text{ mS m}^2 \text{ mol}^{-1}$ P16B.5 $\mathcal{K} = 6.655 \text{ mS m}^2 (\text{mol dm}^{-1})^{-3/2}$ $\Lambda_m^{\circ} = 12.56 \text{ mS m}^2 \text{ mol}^{-1}$ 12.02 mS m² mol⁻¹ 120 mS m⁻¹ 172 Ω P16B.7 0.83 nm

16C Diffusion

E16C.1(a) 6.2×10^3 s

E16C.2(a) 0.00 mol dm⁻³ 0.0121 mol dm⁻³ E16C.3(a) at x = 10 cm $\mathcal{F} = 25$ kN mol⁻¹ at x = 15 cm $\mathcal{F} = 50$ kN mol⁻¹ E16C.4(a) 67.5 kN mol⁻¹ E16C.5(a) 1.3 × 10³ s E16C.6(a) 0.42 nm E16C.7(a) 27.3 ps E16C.8(a) $\langle x^2 \rangle_{\text{iodine}}^{1/2} = 65 \,\mu\text{m} \, \langle x^2 \rangle_{\text{sucrose}}^{1/2} = 32 \,\mu\text{m}$ P16C.112.4 kN mol⁻¹ 2.1×10⁻²⁰ N (molecule)⁻¹ 16.5 kN mol⁻¹ 2.7×10⁻²⁰ N (molecule)⁻¹ 24.8 kN mol⁻¹ 4.1 × 10⁻²⁰ N (molecule)⁻¹ P16C.7 $\frac{\langle x^4 \rangle_{1/2}^{1/4}}{\langle x^2 \rangle_{1/2}^{1/2}} = 3^{1/4}$ P16C.11 $E_a = 6.9$ kJ mol⁻¹

17 Chemical kinetics

17A The rates of chemical reactions

E17A.1(a) no change E17A.2(a) 0.12 mmol dm⁻³ s⁻¹ E17A.3(a) d[A]/dt = -2.7 mol dm⁻³ s⁻¹ d[B]/dt = -5.4 mol dm⁻³ s⁻¹ d[C]/dt = +8.1 mol dm⁻³ s⁻¹ d[D]/dt = +2.7 mol dm⁻³ s⁻¹ E17A.4(a) $v = 1.4 \mod dm^{-3} s^{-1}$ d[A]/dt = -2.70 mol dm⁻³ s⁻¹ d[B]/dt = -1.35 mol dm⁻³ s⁻¹ d[D]/dt = +4.05 mol dm⁻³ s⁻¹ E17A.5(a) dm³ mol⁻¹ s⁻¹ d[C]/dt = 3k_r[A][B] -d[A]/dt = k_r[A][B] E17A.6(a) $\frac{1}{2}k_r[A][B][C]$ dm⁶ mol⁻² s⁻¹ E17A.7(a) second-order dm³ mol⁻¹ s⁻¹ kPa⁻¹ s⁻¹ third-order dm⁶ mol⁻² s⁻¹ kPa⁻² s⁻¹ E17A.8(a) under all conditions $k_{r2} \gg k_{r3}[B]^{1/2}$ or $k_{r2} \ll k_{r3}[B]^{1/2}$ $k_{r2} \gg k_{r3}[B]^{1/2}$ or $k_{r2} \ll k_{r3}[B]^{1/2}$ E17A.9(a) 2.00 P17A.1 first order 4.92 × 10³ s⁻¹ P17A.3 $v = k_r[ICI][H_2]$ $k_r = 0.16 \text{ dm}^3 \text{ mol}^{-1} s^{-1}$ 2.1 × 10⁻⁶ mol dm⁻³ s⁻¹

17B Integrated rate laws

E17B.1(a) 14 Pa s⁻¹ 1.5 × 10³ s E17B.2(a) second-order E17B.3(a) 1.03 × 10⁴ s 489 Torr 461 Torr E17B.4(a) 0.0978 mol dm⁻³ 0.0502 mol dm⁻³ E17B.6(a) 3.1 × 10⁵ s E17B.6(a) 3.1 × 10⁻³ dm³ mol⁻¹ s⁻¹ $t_{1/2}(A) = 1.8$ hours $t_{1/2}(B) = 1$ hour P17B.3 second-order $k_r = 9.95 \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ 2.9 g P17B.5 second-order 7.33 × 10⁻⁵ dm³ mol⁻¹ s⁻¹ P17B.7 first-order 7.65 × 10⁻³ min⁻¹ 91 min P17B.9 55.4% constant P17B.13 first-order 7.1 × 10⁻⁴ s⁻¹ P17B.15 $\frac{2^{n-1}-1}{(n-1)k_r[A]_0^{n-1}} \frac{3^{n-1}-1}{(n-1)k_r[A]_0^{n-1}}$ P17B.17 $\frac{1}{2([A]_0 - 2x)^2} - \frac{1}{2[A]_0^2} = k_r t \frac{1}{[A]_0([A]_0 - 2x)} + \frac{1}{[A]_0^2} \ln \frac{[A]_0 - 2x}{[A]_0 - x} - \frac{1}{[A]_0^2} = k_r t$

17C Reactions approaching equilibrium

E17C.1(a) 2.5×10^2 E17C.2(a) 23.8 ms^{-1} P17C.5 $k'_a = 1.7 \times 10^7 \text{ s}^{-1}$ $k_a = 2.8 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} K = 1.7 \times 10^{-2}$

17D The Arrhenius equation

E17D.1(a) $3.2 \times 10^{-12} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ E17D.2(a) 108 kJ mol⁻¹ $6.62 \times 10^{15} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ E17D.3(a) 35 kJ mol⁻¹ E17D.4(a) 0.076 7.6 % E17D.5(a) $2.6 \times 10^3 \text{ K}$ P17D.3 180 kJ mol⁻¹ $2.11 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ P17D.5 13.7 kJ mol⁻¹ $8.75 \times 10^8 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$

17E Reaction mechanisms

E17E.3(a) -3 kJ mol^{-1} P17E.3 39.1 d P17E.5 $\frac{k_a k_b k_c [A]}{k'_a k'_b + k'_a k_c + k_b k_c}$ P17E.7 $\frac{k_r K_1 K_2}{c^{\circ 2}} [\text{HCl}]^3 [\text{CH}_3 \text{CH} = \text{CH}_2]$

17F Examples of reaction mechanisms

E17F.1(a) $1.9 \times 10^{-6} \text{ Pa}^{-1} \text{ s}^{-1}$ 1.9 MPa⁻¹ s⁻¹ E17F.2(a) p = 0.996 $\langle N \rangle = 251$ E17F.3(a) 0.13 E17F.4(a) 1.50 mmol dm⁻³ s⁻¹ E17F.5(a) $1.1 \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ P17F.3 $(2k_r t[A]_0^2 + 1)^{1/2}$ P17F.7 2.3 µmol dm⁻³ s⁻¹ 1.1 µmol dm⁻³

17G Photochemistry

E17G.1(a) 3.27×10^{21} E17G.2(a) $4.3 \times 10^7 \text{ s}^{-1}$ E17G.3(a) 0.56 mol dm^{-3} E17G.4(a) 7.1 nm P17G.1 1.11 P17G.3 6.9 ns $1.0 \times 10^8 \text{ s}^{-1}$ P17G.5 $2.00 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ P17G.7 2.6 nm I17.3 $\frac{k_a k_b [AH]^2 [B]}{k'_a [BH^+]} \frac{k_a k_b}{k'_a} [HA] [H^+] [B]$ I17.5 $\frac{M_1 (p^2 + 4p + 1)}{(1 + p)(1 - p)} \frac{M_1 (6\langle N \rangle^2 - 6\langle N \rangle + 1)}{2\langle N \rangle - 1}$

18 Reaction dynamics

18A Collision theory

E18A.1(a) $1.12 \times 10^{10} \text{ s}^{-1}$ $1.62 \times 10^{35} \text{ m}^{-3} \text{ s}^{-1}$ 1.6%E18A.2(a) 1.04×10^{-3} f = 0.069 $f = 1.19 \times 10^{-15}$ $f = 1.57 \times 10^{-6}$ E18A.3(a) 21% 3.0% 160% 16%E18A.4(a) $1.0 \times 10^{-5} \text{ mol}^{-1} \text{ m}^3 \text{ s}^{-1}$ E18A.5(a) 1.2×10^{-3} E18A.6(a) 0.73E18A.7(a) 5.12×10^{-7} P18A.1 0.043 nm^2 0.15P18A.3 $1.64 \times 10^8 \text{ mol}^{-1} \text{ m}^3 \text{ s}^{-1}$ 7.5 ns P18A.5 For $C_2H_5 P = 0.024$ For $C_6H_{11} P = 0.043$

18B Diffusion-controlled reactions

E18B.1(a) $4.5 \times 10^7 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$ **E18B.2(a)** $6.61 \times 10^6 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$ $3.0 \times 10^7 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$ **E18B.3(a)** $8.0 \times 10^6 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$ 84 ns**E18B.4(a)** $1.81 \times 10^{11} \text{ mol} \text{ m}^{-3} \text{ s}^{-1}$ $2.37 \times 10^6 \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$

18C Transition-state theory

E18C.1(a) 69.7 kJ mol⁻¹ -25.3 J K⁻¹ mol⁻¹ E18C.2(a) +71.9 kJ mol⁻¹ E18C.3(a) -91.2 J K⁻¹ mol⁻¹ E18C.4(a) -74 J K⁻¹ mol⁻¹ E18C.5(a) $\Delta^{\ddagger}H = +5.0$ kJ mol⁻¹ $\Delta^{\ddagger}S = -46$ J K⁻¹ mol⁻¹ $\Delta^{\ddagger}G = +19$ kJ mol⁻¹ E18C.6(a) $k_{r}^{\circ} = 20.9$ dm⁶ mol⁻² min⁻¹ E18C.7(a) 0.073 P18C.1 $\Delta^{\ddagger}H = +60.4$ kJ mol⁻¹ $\Delta^{\ddagger}S = -181$ J K⁻¹ mol⁻¹ $\Delta^{\ddagger}G = +60.4...\times10^{3}$ J mol⁻¹ $\Delta^{\ddagger}U = +62.9$ kJ mol⁻¹ P18C.5 1.4 × 10⁶ dm³ mol⁻¹ s⁻¹ 1.2 × 10⁶ dm³ mol⁻¹ s⁻¹ P18C.9 lg[$k_{r}/(dm^{3} mol^{-1} s^{-1})$] = 0.1451 × *I* - 0.1815 $k_{r}^{\circ} = 0.658$ dm³ mol⁻¹ s⁻¹ lg $\gamma_{B} = 0.145$ *I* P18C.11 408 N m⁻¹

18D The dynamics of molecular collisions

E18D.2(a) $\overline{P}kT$

18E Electron transfer in homogeneous systems

E18E.1(a) 0.01% **E18E.2(a)** $\Delta E_{\rm R} = 2 \text{ kJ mol}^{-1}$ **E18E.3(a)** 12.5 nm⁻¹ **P18E.3** $\Delta E_{\rm R} = 1.05 \text{ eV}$ **P18E.5** $\beta = 13 \text{ nm}^{-1}$

19 Processes at solid surfaces

19A An introduction to solid surfaces

E19A.1(a) $1.4 \times 10^{14} \text{ cm}^{-2} \text{ s}^{-1}$ $3.1 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$ E19A.2(a) 0.13 barE19A.3(a) 9.1×10^{-3} P19A.1 $-0.646 \left(\frac{C}{a_0}\right) + 0.259 \left(\frac{C}{a_0}\right) -0.128 \left(\frac{C}{a_0}\right) -0.516 \left(\frac{C}{a_0}\right)$ (b) is the more favourable arrangement P19A.3 $n = 1.61 \times 10^{15} \text{ cm}^{-2}$ $f_{H_2}(100 \text{ Pa}) = 6.7 \times 10^5 \text{ s}^{-1}$ $f_{H_2}(0.10 \,\mu\text{Torr}) = 8.9 \times 10^{-2} \text{ s}^{-1}$ $f_{C_3H_8}(100 \text{ Pa}) = 1.42 \times 10^5 \text{ s}^{-1}$ $f_{C_3H_8}(0.10 \,\mu\text{Torr}) = 1.9 \times 10^{-2} \text{ s}^{-1}$ $n = 1.14 \times 10^{15} \text{ cm}^{-2}$ $f_{H_2}(100 \text{ Pa}) = 9.4 \times 10^5 \text{ s}^{-1}$ $f_{H_2}(0.10 \,\mu\text{Torr}) = 0.13 \text{ s}^{-1}$ $f_{C_3H_8}(100 \text{ Pa}) = 2.0 \times 10^5 \text{ s}^{-1}$ $f_{C_3H_8}(0.10 \,\mu\text{Torr}) = 2.7 \times 10^{-2} \text{ s}^{-1}$ $n = 1.86 \times 10^{15} \text{ cm}^{-2}$ $f_{H_2}(100 \text{ Pa}) = 5.8 \times 10^5 \text{ s}^{-1}$ $f_{H_2}(0.10 \,\mu\text{Torr}) = 7.7 \times 10^{-2} \text{ s}^{-1}$ $f_{C_3H_8}(100 \text{ Pa}) = 1.2 \times 10^5 \text{ s}^{-1}$ $f_{C_3H_8}(0.10 \,\mu\text{Torr}) = 1.6 \times 10^{-2} \text{ s}^{-1}$

19B Adsorption and desorption

E19B.1(a) 33.6 cm³ E19B.2(a) 47 s E19B.3(a) $\theta_{26.0 \text{ Pa}} = 0.83$ $\theta_{3.0 \text{ Pa}} = 0.36$ E19B.4(a) 0.24 kPa 25 kPa E19B.5(a) $p_2 = 15 \text{ kPa}$ E19B.6(a) -12.4 kJ mol⁻¹ E19B.7(a) 651 kJ mol⁻¹ 1.7 × 10⁹⁷ min 0.17 µs E19B.8(a) 611 kJ mol⁻¹ E19B.9(a) for $E_{a,des} = 15 \text{ kJ mol}^{-1} t_{1/2} (400 \text{ K}) = 9.1 \text{ ps} t_{1/2} (1000 \text{ K}) = 0.61 \text{ ps}$ for $E_{a,des} = 150 \text{ kJ mol}^{-1} t_{1/2} (400 \text{ K}) = 3.9 × 10^6 \text{ s} t_{1/2} (1000 \text{ K}) = 6.8 \text{ µs}$ P19B.3 165 13.1 cm³ 263 12.5 cm³ P19B.7 $\Delta_{ad}H^{\circ} = -20 \text{ kJ mol}^{-1} \Delta_{ad}G^{\circ} = -64 \text{ kJ mol}^{-1}$ P19B.9 $c_2 = 2.22$ $c_1 = 0.16 \text{ g}$

19C Heterogeneous catalysis

E19C.1(a) 11 m² **P19C.3** $k_c = 3.7 \times 10^{-3} \text{ kPa s}^{-1}$

19D Processes at electrodes

EI9D.1(a) 0.14 V EI9D.2(a) 2.8 mA cm⁻² EI9D.3(a) 49 mA cm⁻² EI9D.4(a) 1.7×10^{-4} A cm⁻² 1.7×10^{-4} A cm⁻² EI9D.5(a) 0.31 mA cm⁻² 5.4 mA cm⁻² -1.4×10^{42} mA cm⁻² EI9D.6(a) for H⁺/Pt 4.9×10^{15} s⁻¹ 3.9 s⁻¹ for Fe³⁺/Pt 1.6×10^{16} s⁻¹ 12 s⁻¹ for H⁺/Pb 3.1×10^7 s⁻¹ 2.4×10^{-8} s⁻¹ EI9D.7(a) 33Ω $3.3 \times 10^{10} \Omega$ PI9D.1 $\alpha = 0.38$ $j_0 = 0.79$ mA cm⁻² PI9D.3 $E(Fe^{2+}/Fe) = -0.611$ V $\alpha = 0.365$ $j_0 = 8.91$ nA cm⁻² PI9D.5 $\alpha = 0.50$ $j_0 = 1.99 \times 10^{-5}$ mA m⁻² II9.1 $U = \frac{4}{3}\pi \epsilon r_0^3 \mathcal{N} \left[\frac{1}{15} \left(\frac{r_0}{R} \right)^9 - \frac{1}{2} \left(\frac{r_0}{R} \right)^3 \right] R_{eq} = 294$ pm -304 kJ mol⁻¹ II9.3 57.7 pN II9.5 +1.23 V +1.06 V +1.09 V