THE CHEMIST'S TOOLKIT 4 Integration

Integration is concerned with the areas under curves. The integral of a function $f(x)$, which is denoted $\int f(x) \mathrm{d} x$ (the symbol \int is an elongated S denoting a sum), between the two values $x=a$ and $x=b$ is defined by imagining the x-axis as divided into strips of width δx and evaluating the following sum:

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{\delta x \rightarrow 0} \sum_{i} f\left(x_{i}\right) \delta x \tag{4.1}
\end{equation*}
$$

As can be appreciated from Sketch 4.1, the integral is the area under the curve between the limits a and b. The function to be integrated is called the integrand. It is an astonishing mathematical fact that the integral of a function is the inverse of the differential of that function. In other words, if differentiation of f is followed by integration of the resulting function, the result is the original function f (to within a constant).

The integral in the preceding equation with the limits specified is called a definite integral. If it is written without the limits specified, it is called an indefinite integral. If the result of carrying out an indefinite integration is $g(x)+C$, where C is a constant, the following procedure is used to evaluate the corresponding definite integral:

$$
\begin{align*}
I=\int_{a}^{b} f(x) \mathrm{d} x & =\left.\{g(x)+C\}\right|_{a} ^{b}=\{g(b)+C\}-\{g(a)+C\} \\
& =g(b)-g(a) \quad \text { Definite integral } \tag{4.2}
\end{align*}
$$

Note that the constant of integration disappears. The definite and indefinite integrals encountered in this text are listed in the Resource section. They may also be calculated by using mathematical software.

Further information

When an indefinite integral is not in the form of one of those listed in the Resource section it is sometimes possible to transform it into one of these forms by using integration techniques such as:

Integration by parts. See The chemist's toolkit 15.

Substitution. Introduce a variable u related to the independent variable x (for example, an algebraic relation such as $u=x^{2}-1$ or a trigonometric relation such as $u=\sin x$). Express the differential $\mathrm{d} x$ in terms of $\mathrm{d} u$ (for these substitutions, $\mathrm{d} u=2 x \mathrm{~d} x$ and $\mathrm{d} u=\cos x \mathrm{~d} x$, respectively). Then transform the original integral written in terms of x into an integral in terms of u for which, in some cases, a standard form such as one of those listed in the Resource section can be used.

Brief illustration 4.1: Integration by substitution

To evaluate the indefinite integral $\int \cos ^{2} x \sin x \mathrm{~d} x$ make the substitution $u=\cos x$. It follows that $\mathrm{d} u / \mathrm{d} x=-\sin x$, and therefore that $\sin x \mathrm{~d} x=-\mathrm{d} u$. The integral is therefore

$$
\int \cos ^{2} x \sin x \mathrm{~d} x=-\int u^{2} \mathrm{~d} u=-\frac{1}{3} u^{3}+C=-\frac{1}{3} \cos ^{3} x+C
$$

To evaluate the corresponding definite integral, convert the limits on x into limits on u. Thus, if the limits are $x=0$ and $x=\pi$, the limits become $u=\cos 0=1$ and $u=\cos \pi=-1$:

$$
\int_{0}^{\pi} \cos ^{2} x \sin x \mathrm{~d} x=-\int_{1}^{-1} u^{2} \mathrm{~d} u=\left.\left\{-\frac{1}{3} u^{3}+C\right\}\right|_{1} ^{-1}=\frac{2}{3}
$$

A function may depend on more than one variable, in which case it may be necessary to integrate over all the variables, as in:

$$
I=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

We (but not everyone) adopt the convention that a and b are the limits of the variable x and c and d are the limits for y (as depicted by the colours in this instance). This procedure is simple if the function is a product of functions of each variable and of the form $f(x, y)=X(x) Y(y)$. In this case, the double integral is just a product of each integral:

$$
I=\int_{a}^{b} \int_{c}^{d} X(x) Y(y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} X(x) \mathrm{d} x \int_{c}^{d} Y(y) \mathrm{d} y
$$

Brief illustration 4.2: A double integral
Double integrals of the form

$$
I=\int_{0}^{L_{1}} \int_{0}^{L_{2}} \sin ^{2}\left(\pi x / L_{1}\right) \sin ^{2}\left(\pi y / L_{2}\right) \mathrm{d} x \mathrm{~d} y
$$

occur in the discussion of the translational motion of a particle in two dimensions, where L_{1} and L_{2} are the maximum extents of travel along the x - and y-axes, respectively. To evaluate I write

$$
\begin{aligned}
I & =\overbrace{\int_{0}^{L_{1}} \sin ^{2}\left(\pi x / L_{1}\right) \mathrm{d} x \overbrace{0}^{L_{2}} \sin ^{2}\left(\pi y / L_{2}\right) \mathrm{d} y}^{\text {Integral T. }} \\
& =\left.\left.\left\{\frac{1}{2} x-\frac{\sin \left(2 \pi x / L_{1}\right)}{4 \pi / L_{1}}+C\right\}\right|_{0} ^{L_{1}}\left\{\frac{1}{2} y-\frac{\sin \left(2 \pi y / L_{2}\right)}{4 \pi / L_{2}}+C\right\}\right|_{0} ^{L_{2}} \\
& =\frac{1}{4} L_{1} L_{2}
\end{aligned}
$$

