THE CHEMIST'S TOOLKIT 5 Differentiation

Differentiation is concerned with the slopes of functions, such as the rate of change of a variable with time. The formal definition of the derivative, $\mathrm{d} f / \mathrm{d} x$, of a function $f(x)$ is

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x)-f(x)}{\delta x} \quad \begin{align*}
& \text { First derivative } \tag{5.1}\\
& \text { [definition] }
\end{align*}
$$

As shown in Sketch 5.1, the derivative can be interpreted as the slope of the tangent to the graph of $f(x)$ at a given value of x. A positive first derivative indicates that the function slopes upwards (as x increases), and a negative first derivative indicates the opposite. It is sometimes convenient to denote the first derivative as $f^{\prime}(x)$. The second derivative, $\mathrm{d}^{2} f / \mathrm{d} x^{2}$, of a function is the derivative of the first derivative (here denoted f^{\prime}):

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}=\lim _{\delta x \rightarrow 0} \frac{f^{\prime}(x+\delta x)-f^{\prime}(x)}{\delta x} \quad \begin{align*}
& \text { Second derivative } \tag{5.2}\\
& \text { [definition] }
\end{align*}
$$

It is sometimes convenient to denote the second derivative $f^{\prime \prime}$. As shown in Sketch 5.2, the second derivative of a function can be interpreted as an indication of the sharpness of the curvature of the function. A positive second derivative indicates that the function is \cup shaped, and a negative second derivative indicates that it is \cap shaped. The second derivative is zero at a point of inflection, where the first derivative passes through zero but does not change sign.

The derivatives of some common functions are as follows:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=n x^{n-1} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \mathrm{e}^{a x}=a \mathrm{e}^{a x} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \sin a x=a \cos a x \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \cos a x=-a \sin a x
\end{aligned}
$$

Sketch 5.1

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln a x=\frac{1}{x}
$$

It follows from the definition of the derivative that a variety of combinations of functions can be differentiated by using the following rules:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(u+v)=\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{\mathrm{d} v}{\mathrm{~d} x} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} u v=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{u}{v}=\frac{1}{v} \frac{\mathrm{~d} u}{\mathrm{~d} x}-\frac{u}{v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}
\end{aligned}
$$

Brief illustration 5.1: Derivatives of a product of functions

To differentiate the function $f=\sin ^{2} a x / x^{2}$ write

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\sin ^{2} a x}{x^{2}} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sin a x}{x}\right)\left(\frac{\sin a x}{x}\right)=2\left(\frac{\sin a x}{x}\right) \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sin a x}{x}\right) \\
& =2\left(\frac{\sin a x}{x}\right)\left\{\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x} \sin a x+\sin a x \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{x}\right\} \\
& =2\left\{\frac{a}{x^{2}} \sin a x \cos a x-\frac{\sin ^{2} a x}{x^{3}}\right\}
\end{aligned}
$$

The function and this first derivative are plotted in Sketch 5.3.

Sketch 5.3
It is sometimes convenient to differentiate with respect to a function of x, rather than x itself.

Brief illustration 5.2: Differentiation with respect to a function

Suppose that

$$
f(x)=a+\frac{b}{x}+\frac{c}{x^{2}}
$$

where a, b, and c are constants and you need to evaluate $\mathrm{d} f / \mathrm{d}(1 / x)$, rather than $d f / \mathrm{d} x$. To begin, let $y=1 / x$. Then $f(y)$ $=a+b y+c y^{2}$ and

$$
\frac{\mathrm{d} f}{\mathrm{~d} y}=b+2 c y
$$

Because $y=1 / x$, it follows that

$$
\frac{\mathrm{d} f}{\mathrm{~d}(1 / x)}=b+\frac{2 c}{x}
$$

