THE CHEMIST'S TOOLKIT 9 Partial derivatives

A partial derivative of a function of more than one variable, such as $f(x, y)$, is the slope of the function with respect to one of the variables, all the other variables being held constant (Sketch 9.1). Although a partial derivative shows how a function changes when one variable changes, it may be used to determine how the function changes when more than one variable changes by an infinitesimal amount. Thus, if f is a function of x and y, then when x and y change by $\mathrm{d} x$ and $\mathrm{d} y$, respectively, f changes by

$$
\begin{equation*}
\mathrm{d} f=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y \tag{9.1}
\end{equation*}
$$

where the symbol ∂ ('curly d') is used (instead of d) to denote a partial derivative and the subscript on the parentheses indicates which variable is being held constant.

Sketch 9.1
The quantity $\mathrm{d} f$ is also called the differential of f. Successive partial derivatives may be taken in any order:

$$
\begin{equation*}
\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right)_{x}=\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right)_{y} \tag{9.2}
\end{equation*}
$$

Brief illustration 9.1: partial derivatives
Suppose that $f(x, y)=a x^{3} y+b y^{2}$ (the function plotted in Sketch 9.1) then

$$
\left(\frac{\partial f}{\partial x}\right)_{y}=3 a x^{2} y \quad\left(\frac{\partial f}{\partial y}\right)_{x}=a x^{3}+2 b y
$$

When x and y undergo infinitesimal changes, f changes by

$$
\mathrm{d} f=3 a x^{2} y \mathrm{~d} x+\left(a x^{3}+2 b y\right) \mathrm{d} y
$$

To verify that the order of taking the second partial derivative is irrelevant, form

$$
\begin{aligned}
& \left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right)_{x}=\left(\frac{\partial\left(3 a x^{2} y\right)}{\partial y}\right)_{x}=3 a x^{2} \\
& \left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right)_{y}=\left(\frac{\partial\left(a x^{3}+2 b y\right)}{\partial x}\right)_{y}=3 a x^{2}
\end{aligned}
$$

Now suppose that z is a variable on which x and y depend (for example, x, y, and z might correspond to p, V, and T). The following relations then apply:

Relation 1 . When x is changed at constant z :

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{z}=\left(\frac{\partial f}{\partial x}\right)_{y}+\left(\frac{\partial f}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial x}\right)_{z} \tag{9.3}
\end{equation*}
$$

Relation 2

$$
\begin{equation*}
\left(\frac{\partial y}{\partial x}\right)_{z}=\frac{1}{(\partial x / \partial y)_{z}} \tag{9.4}
\end{equation*}
$$

Relation 3

$$
\begin{equation*}
\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x} \tag{9.5}
\end{equation*}
$$

Combining Relations 2 and 3 results in the Euler chain relation:

$$
\left(\frac{\partial y}{\partial x}\right)_{z}\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}=-1
$$

