## THE CHEMIST'S TOOLKIT 10 Exact differentials

Suppose that $\mathrm{d} f$ can be expressed in the following way:

$$
\begin{equation*}
\mathrm{d} f=g(x, y) \mathrm{d} x+h(x, y) \mathrm{d} y \tag{10.1}
\end{equation*}
$$

Is $\mathrm{d} f$ is an exact differential? If it is exact, then it can be expressed in the form

$$
\begin{equation*}
\mathrm{d} f=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y \tag{10.2}
\end{equation*}
$$

Comparing these two expressions gives

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)_{y}=g(x, y) \quad\left(\frac{\partial f}{\partial y}\right)_{x}=h(x, y) \tag{10.3}
\end{equation*}
$$

It is a property of partial derivatives that successive derivatives may be taken in any order:

$$
\begin{equation*}
\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right)_{x}=\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right)_{y} \tag{10.4}
\end{equation*}
$$

Taking the partial derivative with respect to $x$ of the first equation, and with respect to $y$ of the second gives

$$
\begin{align*}
& \left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)_{y}\right)_{x}=\left(\frac{\partial g(x, y)}{\partial y}\right)_{x}  \tag{10.5}\\
& \left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)_{x}\right)_{y}=\left(\frac{\partial h(x, y)}{\partial x}\right)_{y}
\end{align*}
$$

By the property of partial derivatives these two successive derivatives of $f$ with respect to $x$ and $y$ must be the same, hence

$$
\begin{equation*}
\left(\frac{\partial g(x, y)}{\partial y}\right)_{x}=\left(\frac{\partial h(x, y)}{\partial x}\right)_{y} \tag{10.6}
\end{equation*}
$$

If this equality is satisfied, then $\mathrm{d} f=g(x, y) \mathrm{d} x+h(x, y) \mathrm{d} y$ is an exact differential. Conversely, if it is known from other arguments that $\mathrm{d} f$ is exact, then this relation between the partial derivatives follows.

## Brief illustration 10.1: Exact differentials

Suppose

$$
\mathrm{d} f=\frac{g(x, y)}{3 a x^{2} y} \mathrm{~d} x+\overbrace{\left(a x^{3}+2 b y\right)}^{h(x, y)} \mathrm{d} y
$$

To test whether $\mathrm{d} f$ is exact, form

$$
\begin{aligned}
& \left(\frac{\partial g}{\partial f}\right)_{x}=\left(\frac{\partial\left(3 a x^{2} y\right)}{\partial y}\right)_{x}=3 a x^{2} \\
& \left(\frac{\partial h}{\partial x}\right)_{y}=\left(\frac{\partial\left(a x^{3}+2 b y\right)}{\partial x}\right)_{v}=3 a x
\end{aligned}
$$

The two second derivatives are the same, so $\mathrm{d} f$ is an exact differential and the function $f(x, y)$ can be constructed (see below).

## Brief illustration 10.2: Inexact differentials

Suppose the following expression is encountered:

$$
\mathrm{d} f=\frac{g(x, y)}{3 a x^{2} y} \mathrm{~d} x+\overbrace{\left(a x^{2}+2 b y\right)}^{\frac{h(x, y)}{}} \mathrm{d} y
$$

(Note the presence of $a x^{2}$ rather than the $a x^{3}$ in the preceding Brief illustration.) To test whether this is an exact differential, form

$$
\begin{aligned}
& \left(\frac{\partial g}{\partial y}\right)_{x}=\left(\frac{\partial\left(3 a x^{2} y\right)}{\partial y}\right)_{x}=3 a x^{2} \\
& \left(\frac{\partial h}{\partial x}\right)_{y}=\left(\frac{\partial\left(a x^{2}+2 b y\right)}{\partial x}\right)_{y}=2 a x
\end{aligned}
$$

These two expressions are not equal, so this form of $\mathrm{d} f$ is not an exact differential and there is not a corresponding integrated function of the form $f(x, y)$.

## Further information

If $\mathrm{d} f$ is exact, then

- From a knowledge of the functions $g$ and $h$ the function $f$ can be constructed.
- It then follows that the integral of $\mathrm{d} f$ between specified limits is independent of the path between those limits.

The first conclusion is best demonstrated with a specific example.

Brief illustration 10.3: The reconstruction of an equation
Consider the differential $\mathrm{d} f=3 a x^{2} y \mathrm{~d} x+\left(a x^{3}+2 b y\right) \mathrm{d} y$, which is known to be exact. Because $(\partial f / \partial x)_{y}=3 a x^{2} y$, it can be integrated with respect to $x$ with $y$ held constant, to obtain

$$
f=\int \mathrm{d} f=\int 3 a x^{2} y \mathrm{~d} x=3 a y \int x^{2} \mathrm{~d} x=a x^{3} y+k
$$

where the 'constant' of integration $k$ may depend on $y$ (which has been treated as a constant in the integration), but not on $x$. To find $k(y)$, note that $(\partial f / \partial y)_{x}=a x^{3}+2 b y$, and therefore

$$
\left(\frac{\partial f}{\partial y}\right)_{x}=\left(\frac{\partial\left(a x^{3} y+k\right)}{\partial y}\right)_{x}=a x^{3}+\frac{\mathrm{d} k}{\mathrm{~d} y}=a x^{3}+2 b y
$$

Therefore

$$
\frac{\mathrm{d} k}{\mathrm{~d} y}=2 b y
$$

from which it follows that $k=b y^{2}+$ constant. It follows that

$$
f(x, y)=a x^{3} y+b y^{2}+\text { constant }
$$

The value of the constant is pinned down by stating the boundary conditions; thus, if it is known that $f(0,0)=0$, then the constant is zero.

To demonstrate that the integral of $\mathrm{d} f$ is independent of the path is now straightforward. Because $\mathrm{d} f$ is a differential, its integral between the limits $a$ and $b$ is

$$
\begin{equation*}
\int_{a}^{b} \mathrm{~d} f=f(b)-f(a) \tag{10.7}
\end{equation*}
$$

The value of the integral depends only on the values at the end points and is independent of the path between them. If $\mathrm{d} f$ is not an exact differential, the function $f$ does not exist, and this argument no longer holds. In such cases, the integral of $\mathrm{d} f$ does depend on the path.

## Brief illustration 10.4: Path-dependent integration

Consider the inexact differential (the expression with $a x^{2}$ in place of $a x^{3}$ inside the second parentheses):

$$
\mathrm{d} f=3 a x^{2} y \mathrm{~d} x+\left(a x^{2}+2 b y\right) \mathrm{d} y
$$

Suppose $\mathrm{d} f$ is integrated from $(0,0)$ to $(2,2)$ along the two paths shown in Sketch 10.1.


Sketch 10.1
Along Path 1,

$$
\begin{aligned}
\int_{\text {Path } 1} \mathrm{~d} f & =\int_{0,0}^{2,0} 3 a x^{2} y \mathrm{~d} x+\int_{2,0}^{2,2}\left(a x^{2}+2 b y\right) \mathrm{d} y \\
& =0+4 a \int_{0}^{2} \mathrm{~d} y+2 b \int_{0}^{2} y \mathrm{~d} y=8 a+4 b
\end{aligned}
$$

whereas along Path 2,

$$
\begin{aligned}
\int_{\text {Path } 2} \mathrm{~d} f & =\int_{0,2}^{2,2} 3 a x^{2} y \mathrm{~d} x+\int_{0,0}^{0,2}\left(a x^{2}+2 b y\right) \mathrm{d} y \\
& =6 a \int_{0}^{2} x^{2} \mathrm{~d} x+0+2 b \int_{0}^{2} y \mathrm{~d} y=16 a+4 b
\end{aligned}
$$

The two integrals are not the same.
An inexact differential may sometimes be converted into an exact differential by multiplication by a factor known as an integrating factor. A physical example is the integrating factor $1 / T$ that converts the inexact differential $\mathrm{d} q_{\text {rev }}$ into the exact differential $\mathrm{d} S$ in thermodynamics (Topic 3B of the text).

## Brief illustration 10.5: An integrating factor

The differential $\mathrm{d} f=3 a x^{2} y \mathrm{~d} x+\left(a x^{2}+2 b y\right) \mathrm{d} y$ is inexact; the same is true when $b=0$ and so for simplicity consider $\mathrm{d} f=3 a x^{2} y \mathrm{~d} x+a x^{2} \mathrm{~d} y$ instead. Multiplication of this $\mathrm{d} f$ by $x^{m} y^{n}$ and writing $x^{m} y^{n} \mathrm{~d} f=\mathrm{d} f^{\prime}$ gives

$$
\mathrm{d} f^{\prime}=\overbrace{3 a x^{m+2} y^{n+1}}^{g(x, y)} \mathrm{d} x+\overbrace{a x^{m+2} y^{n}}^{n(x, y)} \mathrm{d} y
$$

Now

$$
\begin{aligned}
& \left(\frac{\partial g}{\partial y}\right)_{x}=\left(\frac{\partial\left(3 a x^{m+2} y^{n+1}\right)}{\partial y}\right)_{x}=3 a(n+1) x^{m+2} y^{n} \\
& \left(\frac{\partial h}{\partial x}\right)_{y}=\left(\frac{\partial\left(a x^{m+2} y^{n}\right)}{\partial x}\right)_{y}=a(m+2) x^{m+1} y^{n}
\end{aligned}
$$

For the new differential to be exact, these two partial derivatives must be equal, so write

$$
3 a(n+1) x^{m+2} y^{n}=a(m+2) x^{m+1} y^{n}
$$

which simplifies to

$$
3(n+1) x=m+2
$$

The only solution that is independent of $x$ is $n=-1$ and $m=$ -2. It follows that

$$
\mathrm{d} f^{\prime}=3 a \mathrm{~d} x+(a / y) \mathrm{d} y
$$

is an exact differential. By the procedure already illustrated, its integrated form is $f^{\prime}(x, y)=3 a x+a \ln y+$ constant.

