THE CHEMIST'S TOOLKIT 11 Measures of concentration

Let A be the solvent and B the solute. The **molar concentration** (informally: 'molarity'), $c_{\rm B}$ or [B], is the amount of solute molecules (in moles) divided by the volume, *V*, of the solution:

$$c_{\rm B} = \frac{n_{\rm B}}{V} \tag{11.1}$$

It is commonly reported in moles per cubic decimetre (mol dm⁻³) or, equivalently, in moles per litre (mol L⁻¹). It is convenient to define its 'standard' value as $c^{\circ} = 1 \mod \text{dm}^{-3}$.

The **molality**, $b_{\rm B}$, of a solute is the amount of solute species (in moles) in a solution divided by the total mass of the solvent (in kilograms), $m_{\rm A}$:

$$b_{\rm B} = \frac{n_{\rm B}}{m_{\rm A}} \tag{11.2}$$

Both the molality and mole fraction are independent of temperature; in contrast, the molar concentration is not. It is convenient to define the 'standard' value of the molality as $b^{\circ} = 1 \text{ molkg}^{-1}$.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount *n* of molecules. If the mole fraction of the solute is $x_{\rm B}$, the amount of solute molecules is $n_{\rm B} = x_{\rm B}n$. The mole fraction of solvent molecules is $x_{\rm A} = 1 - x_{\rm B}$, so the amount of solvent molecules is $n_{\rm A} = x_{\rm A}n = (1 - x_{\rm B})n$. The mass of solvent, of molar mass $M_{\rm A}$, present is $m_{\rm A} = n_{\rm A}M_{\rm A} = (1 - x_{\rm B})nM_{\rm A}$. The molality of the solute is therefore

$$b_{\rm B} = \frac{n_{\rm B}}{m_{\rm A}} = \frac{x_{\rm B}n}{(1 - x_{\rm B})nM_{\rm A}} = \frac{x_{\rm B}}{(1 - x_{\rm B})M_{\rm A}}$$
(11.3a)

The inverse of this relation, the mole fraction in terms of the molality, is

$$x_{\rm B} = \frac{b_{\rm B}M_{\rm A}}{1 + b_{\rm B}M_{\rm A}}$$
(11.3b)

2. The relation between molality and molar concentration

The total mass of a volume *V* of *solution* (not solvent) of mass density ρ is $m = \rho V$. The amount of solute molecules in this volume is $n_{\rm B} = c_{\rm B}V$. The mass of solute present is $m_{\rm B} = n_{\rm B}M_{\rm B} = c_{\rm B}VM_{\rm B}$. The mass of solvent present is therefore $m_{\rm A} = m - m_{\rm B} = \rho V - c_{\rm B}VM_{\rm B} = (\rho - c_{\rm B}M_{\rm B})V$. The molality is therefore

$$b_{\rm B} = \frac{n_{\rm B}}{m_{\rm A}} = \frac{c_{\rm B}V}{(\rho - c_{\rm B}M_{\rm B})V} = \frac{c_{\rm B}}{\rho - c_{\rm B}M_{\rm B}}$$
(11.4a)

The inverse of this relation, the molar concentration in terms of the molality, is

$$c_{\rm B} = \frac{b_{\rm B}\rho}{1 + b_{\rm B}M_{\rm B}} \tag{11.4b}$$

3. The relation between molar concentration and mole fraction

By inserting the expression for $b_{\rm B}$ in terms of $x_{\rm B}$ into the expression for $c_{\rm B}$, the molar concentration of B in terms of its mole fraction is

$$c_{\rm B} = \frac{x_{\rm B}\rho}{x_{\rm A}M_{\rm A} + x_{\rm B}M_{\rm B}} \tag{11.5}$$

with $x_{\rm A} = 1 - x_{\rm B}$. For a dilute solution in the sense that $x_{\rm B}M_{\rm B} << x_{\rm A}M_{\rm A}$,

$$c_{\rm B} \approx \left(\frac{\rho}{x_{\rm A} M_{\rm A}}\right) x_{\rm B} \tag{11.6}$$

If, moreover, $x_{\rm B} \ll 1$, so $x_{\rm A} \approx 1$, then

$$c_{\rm B} \approx \left(\frac{\rho}{M_{\rm A}}\right) x_{\rm B} \tag{11.7}$$