THE CHEMIST'S TOOLKIT 11 Measures of concentration

Let A be the solvent and B the solute. The molar concentration (informally: 'molarity'), c_{B} or [B], is the amount of solute molecules (in moles) divided by the volume, V, of the solution:

$$
\begin{equation*}
c_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{V} \tag{11.1}
\end{equation*}
$$

It is commonly reported in moles per cubic decimetre ($\mathrm{moldm}{ }^{-3}$) or, equivalently, in moles per litre $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$. It is convenient to define its 'standard' value as $c^{\ominus}=1 \mathrm{~mol} \mathrm{dm}^{-3}$.

The molality, b_{B}, of a solute is the amount of solute species (in moles) in a solution divided by the total mass of the solvent (in kilograms), m_{A} :

$$
\begin{equation*}
b_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{m_{\mathrm{A}}} \tag{11.2}
\end{equation*}
$$

Both the molality and mole fraction are independent of temperature; in contrast, the molar concentration is not. It is convenient to define the 'standard' value of the molality as $b^{\ominus}=1 \mathrm{molkg}^{-1}$.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount n of molecules. If the mole fraction of the solute is x_{B}, the amount of solute molecules is $n_{\mathrm{B}}=x_{\mathrm{B}} n$. The mole fraction of solvent molecules is $x_{\mathrm{A}}=1-x_{\mathrm{B}}$, so the amount of solvent molecules is $n_{\mathrm{A}}=x_{\mathrm{A}} n=\left(1-x_{\mathrm{B}}\right) n$. The mass of solvent, of molar mass M_{A}, present is $m_{\mathrm{A}}=n_{\mathrm{A}} M_{\mathrm{A}}=\left(1-x_{\mathrm{B}}\right) n M_{\mathrm{A}}$. The molality of the solute is therefore

$$
\begin{equation*}
b_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{m_{\mathrm{A}}}=\frac{x_{\mathrm{B}} n}{\left(1-x_{\mathrm{B}}\right) n M_{\mathrm{A}}}=\frac{x_{\mathrm{B}}}{\left(1-x_{\mathrm{B}}\right) M_{\mathrm{A}}} \tag{11.3a}
\end{equation*}
$$

The inverse of this relation, the mole fraction in terms of the molality, is

$$
\begin{equation*}
x_{\mathrm{B}}=\frac{b_{\mathrm{B}} M_{\mathrm{A}}}{1+b_{\mathrm{B}} M_{\mathrm{A}}} \tag{11.3b}
\end{equation*}
$$

2. The relation between molality and molar concentration
The total mass of a volume V of solution (not solvent) of mass density ρ is $m=\rho V$. The amount of solute molecules in this volume is $n_{B}=c_{B} V$. The mass of solute present is $m_{B}=$ $n_{\mathrm{B}} M_{\mathrm{B}}=c_{\mathrm{B}} V M_{\mathrm{B}}$. The mass of solvent present is therefore $m_{\mathrm{A}}=m-m_{\mathrm{B}}=\rho V-c_{\mathrm{B}} V M_{\mathrm{B}}=\left(\rho-c_{\mathrm{B}} M_{\mathrm{B}}\right) V$. The molality is therefore

$$
\begin{equation*}
b_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{m_{\mathrm{A}}}=\frac{c_{\mathrm{B}} V}{\left(\rho-c_{\mathrm{B}} M_{\mathrm{B}}\right) V}=\frac{c_{\mathrm{B}}}{\rho-c_{\mathrm{B}} M_{\mathrm{B}}} \tag{11.4a}
\end{equation*}
$$

The inverse of this relation, the molar concentration in terms of the molality, is

$$
\begin{equation*}
c_{\mathrm{B}}=\frac{b_{\mathrm{B}} \rho}{1+b_{\mathrm{B}} M_{\mathrm{B}}} \tag{11.4b}
\end{equation*}
$$

3. The relation between molar concentration and mole fraction

By inserting the expression for b_{B} in terms of x_{B} into the expression for c_{B}, the molar concentration of B in terms of its mole fraction is

$$
\begin{equation*}
c_{\mathrm{B}}=\frac{x_{\mathrm{B}} \rho}{x_{\mathrm{A}} M_{\mathrm{A}}+x_{\mathrm{B}} M_{\mathrm{B}}} \tag{11.5}
\end{equation*}
$$

with $x_{\mathrm{A}}=1-x_{\mathrm{B}}$. For a dilute solution in the sense that $x_{\mathrm{B}} M_{\mathrm{B}} \ll x_{\mathrm{A}} M_{\mathrm{A}}$,

$$
\begin{equation*}
c_{\mathrm{B}} \approx\left(\frac{\rho}{x_{\mathrm{A}} M_{\mathrm{A}}}\right) x_{\mathrm{B}} \tag{11.6}
\end{equation*}
$$

If, moreover, $x_{\mathrm{B}} \ll 1$, so $x_{\mathrm{A}} \approx 1$, then

$$
\begin{equation*}
c_{\mathrm{B}} \approx\left(\frac{\rho}{M_{\mathrm{A}}}\right) x_{\mathrm{B}} \tag{11.7}
\end{equation*}
$$

