THE CHEMIST'S TOOLKIT 12 Series expansions

A function $f(x)$ can be expressed in terms of its value in the vicinity of $x=a$ by using the Taylor series

$$
\begin{align*}
f(x) & =f(a)+\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)_{a}(x-a)+\frac{1}{2!}\left(\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}\right)_{a}(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}\right)_{a}(x-a)^{n} \quad \text { Taylor series } \tag{12.1}
\end{align*}
$$

where the notation $(\ldots)_{a}$ means that the derivative is evaluated at $x=a$ and n ! denotes a factorial defined as

$$
\begin{equation*}
n!=n(n-1)(n-2) \ldots 1, \quad 0!\equiv 1 \tag{12.2}
\end{equation*}
$$

The Maclaurin series for a function is a special case of the Taylor series in which $a=0$. The following Maclaurin series are used at various stages in the text:

$$
\begin{align*}
& (1+x)^{-1}=1-x+x^{2}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \tag{12.3a}\\
& \mathrm{e}^{x}=1+x+\frac{1}{2} x^{2}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{12.3b}
\end{align*}
$$

$$
\begin{equation*}
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} \tag{12.3c}
\end{equation*}
$$

Series expansions are used to simplify calculations, because when $|x| \ll 1$ it is possible, to a good approximation, to terminate the series after one or two terms. Thus, provided $|x| \ll 1$,

$$
\begin{align*}
& (1+x)^{-1} \approx 1-x \tag{12.4a}\\
& \mathrm{e}^{x} \approx 1+x \tag{12.4b}\\
& \ln (1+x) \approx x \tag{12.4c}
\end{align*}
$$

A series is said to converge if the sum approaches a finite, definite value as n approaches infinity. If the sum does not approach a finite, definite value, then the series is said to diverge. Thus, the series expansion of $(1+x)^{-1}$ converges for $|x|<1$ and diverges for $|x| \geq 1$. Tests for convergence are explained in mathematical texts.

