THE CHEMIST'S TOOLKIT 14 Complex numbers

Complex numbers have the general form

$$
\begin{equation*}
z=x+\mathrm{i} y \tag{14.1a}
\end{equation*}
$$

where $\mathrm{i}=\sqrt{-1}$. The real number x is the 'real part of z ', denoted $\operatorname{Re}(z)$; likewise, the real number y is 'the imaginary part of $z^{\prime}, \operatorname{Im}(z)$. The complex conjugate of z, denoted z^{*}, is formed by replacing i by -i :

$$
\begin{equation*}
z^{*}=x-\mathrm{i} y \tag{14.1b}
\end{equation*}
$$

Brief illustration 14.1: Operations with complex numbers
Consider the complex numbers $z_{1}=6+2 \mathrm{i}$ and $z_{2}=-4-3 \mathrm{i}$. Then

$$
\begin{aligned}
& z_{1}+z_{2}=(6-4)+(2-3) \mathrm{i}=2-\mathrm{i} \\
& z_{1}-z_{2}=10+5 \mathrm{i} \\
& z_{1} z_{2}=\{6(-4)-2(-3)\}+\{6(-3)+2(-4)\} \mathrm{i}=-18-26 \mathrm{i}
\end{aligned}
$$

The product of z^{*} and z is denoted $|z|^{2}$ and is called the square modulus of z. From the definition of z and z^{*} and $\mathrm{i}^{2}=-1$ it follows that

$$
\begin{equation*}
|z|^{2}=z^{\star} z=(x+\mathrm{i} y)(x-\mathrm{i} y)=x^{2}+y^{2} \tag{14.2}
\end{equation*}
$$

The square modulus is a real, non-negative number. The absolute value or modulus is denoted $|z|$ and is given by:

$$
\begin{equation*}
|z|=\left(z^{*} z\right)^{1 / 2}=\left(x^{2}+y^{2}\right)^{1 / 2} \tag{14.3}
\end{equation*}
$$

The inverse of z, denoted z^{-1}, is such that $z z^{-1}=1$, which is satisfied if

$$
\begin{equation*}
z^{-1}=\frac{z^{*}}{|z|^{2}} \tag{14.4}
\end{equation*}
$$

This construction is used in the division of complex numbers:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=z_{1} z_{2}^{-1} \tag{14.5}
\end{equation*}
$$

Brief illustration 14.2: Inverse

Consider the complex number $z=8-3$ i. Its square modulus is

$$
|z|^{2}=z^{\star} z=(8-3 \mathrm{i})^{\star}(8-3 \mathrm{i})=(8+3 \mathrm{i})(8-3 \mathrm{i})=64+9=73
$$

The modulus is therefore $|z|=73^{1 / 2}$. The inverse of z is

$$
z^{-1}=\frac{8+3 \mathrm{i}}{73}=\frac{8}{73}+\frac{3}{73} \mathrm{i}
$$

Then

$$
\frac{6+2 \mathrm{i}}{8-3 \mathrm{i}}=(6+2 \mathrm{i})(8-3 \mathrm{i})^{-1}=(6+2 \mathrm{i})\left(\frac{8}{73}+\frac{3}{73} \mathrm{i}\right)=-\frac{42}{73}+\frac{34}{73} \mathrm{i}
$$

For further information about complex numbers, see The chemist's toolkit 16 .

