THE CHEMIST'S TOOLKIT 16 Euler's formula

A complex number $z=x+\mathrm{i} y$ can be represented as a point in a plane, the complex plane, with $\operatorname{Re}(z)$ along the x-axis and $\operatorname{Im}(z)$ along the y-axis (Sketch 16.1). The position of the point can also be specified in terms of a distance r and an angle ϕ (the polar coordinates). Then $x=r \cos \phi$ and $y=r \sin \phi$, so it follows that

$$
\begin{equation*}
z=r(\cos \phi+\mathrm{i} \sin \phi) \tag{16.1}
\end{equation*}
$$

The angle ϕ, called the argument of z, is the angle that r makes with the x-axis. Because $y / x=\tan \phi$, it follows that

$$
\begin{equation*}
r=\left(x^{2}+y^{2}\right)^{1 / 2}=|z| \quad \phi=\arctan \frac{y}{x} \tag{16.2}
\end{equation*}
$$

Sketch 16.1

One of the most useful relations involving complex numbers is Euler's formula:

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \phi}=\cos \phi+\mathrm{i} \sin \phi \tag{16.3}
\end{equation*}
$$

from which it follows that $z=r(\cos \phi+\mathrm{i} \sin \phi)$ can be written

$$
\begin{equation*}
z=r \mathrm{e}^{\mathrm{i} \phi} \tag{16.4}
\end{equation*}
$$

Two more useful relations arise by noting that $\mathrm{e}^{-\mathrm{i} \phi}=$ $\cos (-\phi)+\mathrm{i} \sin (-\phi)=\cos \phi-\mathrm{i} \sin \phi$; it then follows that

$$
\begin{equation*}
\cos \phi=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \phi}+\mathrm{e}^{-\mathrm{i} \phi}\right) \quad \sin \phi=-\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \phi}-\mathrm{e}^{-\mathrm{i} \phi}\right) \tag{16.5}
\end{equation*}
$$

The polar form of a complex number is commonly used to perform arithmetical operations. For instance, the product of two complex numbers in polar form is

$$
\begin{equation*}
z_{1} z_{2}=\left(r_{1} \mathrm{e}^{\mathrm{i} \boldsymbol{\phi}_{1}}\right)\left(r_{2} 2^{\mathrm{i} \mathrm{i}_{2}}\right)=r_{1} r_{2} \mathrm{e}^{\mathrm{i}\left(\phi_{1}+\phi_{2}\right)} \tag{16.6}
\end{equation*}
$$

This construction is illustrated in Sketch 16.2.

Sketch 16.2

Brief illustration 16.1: Polar representation
Consider the complex number $z=8-3$ i. From Brief illustration 14.1, $r=|z|=73^{1 / 2}$. The argument of z is

$$
\phi=\arctan \left(\frac{-3}{8}\right)=-0.359 \mathrm{rad}, \text { or }-20.6^{\circ}
$$

The polar form of the number is therefore

$$
z=73^{1 / 2} \mathrm{e}^{-0.359 i}
$$

Brief illustration 16.2: Roots

To determine the 5th root of $z=8-3 \mathrm{i}$, note that from Brief illustration 16.1 its polar form is

$$
z=73^{1 / 2} \mathrm{e}^{-0.359 \mathrm{i}}=8.544 \mathrm{e}^{-0.359 \mathrm{i}}
$$

The 5th root is therefore

$$
z^{1 / 5}=\left(8.544 \mathrm{e}^{-0.359 \mathrm{i}}\right)^{1 / 5}=8.544^{1 / 5} \mathrm{e}^{-0.359 i / 5}=1.536 \mathrm{e}^{-0.0718 \mathrm{i}}
$$

It follows that $x=1.536 \cos (-0.0718)=1.532$ and $y=1.536$ $\sin (-0.0718)=-0.110$ (note that the ϕ are in radians), so

$$
(8-3 i)^{1 / 5}=1.532-0.110 \mathrm{i}
$$

