THE CHEMIST'S TOOLKIT 17 Vectors

A vector is a quantity with both magnitude and direction. The vector v shown in Sketch 17.1 has components on the x, y, and z axes with values v_x, v_y , and v_z , respectively, which may be positive or negative. For example, if $v_x = -1.0$, the *x*-component of the vector v has a magnitude of 1.0 and points in the -x direction. The magnitude of a vector is denoted v or |v| and is given by

$$v = (v_x^2 + v_y^2 + v_z^2)^{1/2}$$
(17.1)

Thus, a vector with components $v_x = -1.0$, $v_y = +2.5$, and $v_z = +1.1$ has magnitude 2.9 and would be represented by an arrow of length 2.9 units and the appropriate orientation (as in the inset in the Sketch). Velocity and momentum are vectors; the magnitude of a velocity vector is called the speed. Force, too, is a vector. Electric and magnetic fields are two more examples of vectors.

Sketch 17.1

Further information

If the polar coordinates of the vector v are θ and ϕ (the colatitude and azimuth, respectively), then

$\nu_x = \nu \sin \theta \cos \phi$		
$v_y = v \sin \theta \sin \phi$		
$v_z = v \cos \theta$	Orientation	(17.2)

and therefore that

$$\theta = \arccos(v_z/v)$$
 $\phi = \arctan(v_y/v_x)$ (17.3)

Brief illustration 17.1: Vector orientation

The vector $\boldsymbol{v} = 2\boldsymbol{i} + 3\boldsymbol{j} - \boldsymbol{k}$ has magnitude

 $\nu = \{2^2 + 3^2 + (-1)^2\}^{1/2} = 14^{1/2} = 3.74$

Its direction is given by

$$\theta = \arccos(-1/14^{1/2}) = 105.5^{\circ}$$
 $\phi = \arctan(3/2) = 56.3^{\circ}$

The operations involving vectors (addition, multiplication, etc.) needed for the text are described in *The chemist's toolkit* 22.