THE CHEMIST'S TOOLKIT 17 Vectors

A vector is a quantity with both magnitude and direction. The vector v shown in Sketch 17.1 has components on the x, y, and z axes with values v_{x}, v_{y}, and v_{z}, respectively, which may be positive or negative. For example, if $v_{x}=-1.0$, the x-component of the vector v has a magnitude of 1.0 and points in the $-x$ direction. The magnitude of a vector is denoted v or $|v|$ and is given by

$$
\begin{equation*}
v=\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)^{1 / 2} \tag{17.1}
\end{equation*}
$$

Thus, a vector with components $v_{x}=-1.0, v_{y}=+2.5$, and $v_{z}=+1.1$ has magnitude 2.9 and would be represented by an arrow of length 2.9 units and the appropriate orientation (as in the inset in the Sketch). Velocity and momentum are vectors; the magnitude of a velocity vector is called the speed. Force, too, is a vector. Electric and magnetic fields are two more examples of vectors.

Sketch 17.1

Further information

If the polar coordinates of the vector \boldsymbol{v} are θ and ϕ (the colatitude and azimuth, respectively), then

$$
\begin{align*}
& v_{x}=v \sin \theta \cos \phi \\
& v_{y}=v \sin \theta \sin \phi \\
& v_{z}=v \cos \theta \tag{17.2}
\end{align*}
$$

and therefore that

$$
\begin{equation*}
\theta=\arccos \left(v_{z} / v\right) \quad \phi=\arctan \left(v_{y} / v_{x}\right) \tag{17.3}
\end{equation*}
$$

Brief illustration 17.1: Vector orientation
The vector $\boldsymbol{v}=2 \boldsymbol{i}+3 \boldsymbol{j}-\boldsymbol{k}$ has magnitude

$$
v=\left\{2^{2}+3^{2}+(-1)^{2}\right\}^{1 / 2}=14^{1 / 2}=3.74
$$

Its direction is given by

$$
\theta=\arccos \left(-1 / 14^{1 / 2}\right)=105.5^{\circ} \quad \phi=\arctan (3 / 2)=56.3^{\circ}
$$

The operations involving vectors (addition, multiplication, etc.) needed for the text are described in The chemist's toolkit 22.

