THE CHEMIST'S TOOLKIT 20 Angular momentum

Angular velocity, ω (omega), is the rate of change of angular position; it is reported in radians per second ($\mathrm{rad} \mathrm{s}^{-1}$). There are 2π radians in a circle, so 1 cycle per second is the same as 2π radians per second. For convenience, the 'rad' is often dropped, and the units of angular velocity are denoted s^{-1}.

Expressions for other angular properties follow by analogy with the corresponding equations for linear motion (The chemist's toolkit 3). Thus, the magnitude, J, of the angular momentum, J, is defined, by analogy with the magnitude of the linear momentum $(p=m v)$:

$$
\begin{equation*}
J=I \omega \tag{20.1}
\end{equation*}
$$

The quantity I is the moment of inertia of the object. It represents the resistance of the object to a change in the state of rotation in the same way that mass represents the resistance of the object to a change in the state of translation. In the case of a rotating molecule the moment of inertia is defined as

$$
\begin{equation*}
I=\sum_{i} m_{i} r_{i}^{2} \tag{20.2}
\end{equation*}
$$

where m_{i} is the mass of atom i and r_{i} is its perpendicular distance from the axis of rotation (Sketch 20.1). For a point particle of mass m moving in a circle of radius r, the moment of inertia about the axis of rotation is

$$
\begin{equation*}
I=m r^{2} \tag{20.3}
\end{equation*}
$$

The SI units of moment of inertia are therefore kilogram metre $^{2}\left(\mathrm{~kg} \mathrm{~m}^{2}\right)$, and those of angular momentum are kilogram metre ${ }^{2}$ per second $\left(\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}\right)$.

Sketch 20.1
The angular momentum is a vector, a quantity with both magnitude and direction (The chemist's toolkit 17). For rotation in three dimensions, the angular momentum has three components: J_{x}, J_{y}, and J_{z}. For a particle travelling on a circular path of radius r about the z-axis, and therefore confined to the $x y$-plane, the angular momentum vector points in the z-direction only (Sketch 20.2), and its only component is

$$
\begin{equation*}
J_{z}= \pm p r \tag{20.4}
\end{equation*}
$$

where p is the magnitude of the linear momentum in the $x y$-plane at any instant. When $J_{z}>0$, the particle travels in a clockwise direction as viewed from below; when $J_{z}<0$, the motion is anticlockwise. A particle that is travelling at high speed in a circle has a higher angular momentum than a particle of the same mass travelling more slowly. An object with a high angular momentum (like a flywheel) requires a strong braking force (more precisely, a strong 'torque') to bring it to a standstill.

The components of the angular momentum vector \boldsymbol{J} when it lies in a general orientation are

$$
\begin{equation*}
J_{x}=y p_{z}-z p_{y} \quad J_{y}=z p_{x}-x p_{z} \quad J_{z}=x p_{y}-y p_{x} \tag{20.5}
\end{equation*}
$$

where p_{x} is the component of the linear momentum in the x-direction at any instant, and likewise p_{y} and p_{z} in the other directions. The square of the magnitude of the vector is given by

$$
\begin{equation*}
J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \tag{20.6}
\end{equation*}
$$

By analogy with the expression for linear motion $\left(E_{\mathrm{k}}=\right.$ $\left.\frac{1}{2} m v^{2}=p^{2} / 2 m\right)$, the kinetic energy of a rotating object is

$$
\begin{equation*}
E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}=\frac{J^{2}}{2 I} \tag{20.7}
\end{equation*}
$$

For a given moment of inertia, high angular momentum corresponds to high kinetic energy. As may be verified, the units of rotational energy are joules (J).

The analogous roles of m and I, of v and ω, and of p and J in the translational and rotational cases respectively provide a ready way of constructing and recalling equations. These analogies are summarized below:

Translation		Rotation	
Property	Significance	Property	Significance
Mass, m	Resistance to the effect of a force	Moment of inertia, I	Resistance to the effect of a twisting force (torque)
Speed, v	Rate of change of position	Angular velocity, ω	Rate of change of angle
Magnitude of linear momentum, p	$p=m v$	Magnitude of angular momentum, J	$J=I \omega$
Translational kinetic energy, E_{k}	$E_{\mathrm{k}}=\frac{1}{2} m v^{2}=$	Rotational $p^{2} / 2 m$ kinetic energy, E_{k}	$E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}=J^{2} / 2 I$

