
The chemist’s toolkit 21  S pherical polar 
coordinates

The mathematics of systems with spherical symmetry 
(such as atoms) is often greatly simplified by using spheri-
cal polar coordinates (Sketch 21.1): r, the distance from 
the origin (the radius), θ, the colatitude, and ϕ, the azi-
muth. The ranges of these coordinates are (with angles in 
radians, Sketch 21.2): 

0 ≤ r ≤ +∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π
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An angle in radians is defined as the ratio of the length 
of an arc, s, to the radius r of a circle, so θ = s/r. For a 
complete circle, the arc length is the circumference, 2πr, so 
the angle subtended in radians for a complete revolution 
is 2πr/r = 2π. That is, 360° corresponds to 2π radians, and 
consequently 180° corresponds to π radians.

Cartesian and polar coordinates are related by
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The volume element in Cartesian coordinates is dτ = 
dxdydz, and in spherical polar coordinates it becomes
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An integral of a function f(r,θ,ϕ) over all space in polar 
coordinates therefore has the form
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where the limits on the integrations are for r, θ, and ϕ, 
respectively.




