## THE CHEMIST'S TOOLKIT 21 Spherical polar coordinates

The mathematics of systems with spherical symmetry (such as atoms) is often greatly simplified by using spherical polar coordinates (Sketch 21.1): $r$, the distance from the origin (the radius), $\theta$, the colatitude, and $\phi$, the azimuth. The ranges of these coordinates are (with angles in radians, Sketch 21.2):

$$
0 \leq r \leq+\infty, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi
$$



Sketch 21.1

Sketch 21.2

An angle in radians is defined as the ratio of the length of an arc, $s$, to the radius $r$ of a circle, so $\theta=s / r$. For a complete circle, the arc length is the circumference, $2 \pi r$, so the angle subtended in radians for a complete revolution is $2 \pi r / r=2 \pi$. That is, $360^{\circ}$ corresponds to $2 \pi$ radians, and consequently $180^{\circ}$ corresponds to $\pi$ radians.

Cartesian and polar coordinates are related by

$$
\begin{equation*}
x=r \sin \theta \cos \phi \quad y=r \sin \theta \sin \phi \quad z=r \cos \theta \tag{21.1}
\end{equation*}
$$

The volume element in Cartesian coordinates is $\mathrm{d} \tau=$ $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$, and in spherical polar coordinates it becomes

$$
\begin{equation*}
\mathrm{d} \tau=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{21.2}
\end{equation*}
$$

An integral of a function $f(r, \theta, \phi)$ over all space in polar coordinates therefore has the form

$$
\begin{equation*}
\int f \mathrm{~d} \tau=\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} f(r, \theta, \phi) r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{21.3}
\end{equation*}
$$

where the limits on the integrations are for $r, \theta$, and $\phi$, respectively.

