THE CHEMIST'S TOOLKIT 22 The manipulation of vectors

In three dimensions, the vectors \boldsymbol{u} (with components u_{x}, u_{y}, and u_{z}) and \boldsymbol{v} (with components v_{x}, v_{y}, and v_{z}) have the general form:

$$
\begin{equation*}
\boldsymbol{u}=u_{x} \boldsymbol{i}+u_{y} \boldsymbol{j}+u_{z} \boldsymbol{k} \quad \boldsymbol{v}=v_{x} \boldsymbol{i}+v_{y} \boldsymbol{j}+v_{z} \boldsymbol{k} \tag{22.1}
\end{equation*}
$$

where $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k} are unit vectors, vectors of magnitude 1 , pointing along the positive directions on the x, y, and z axes. The operations of addition, subtraction, and multiplication are as follows:

1. Addition:

$$
\begin{equation*}
\boldsymbol{v}+\boldsymbol{u}=\left(v_{x}+u_{x}\right) \boldsymbol{i}+\left(v_{y}+u_{y}\right) \boldsymbol{j}+\left(v_{z}+u_{z}\right) \boldsymbol{k} \tag{22.2}
\end{equation*}
$$

2. Subtraction:

$$
\begin{equation*}
\boldsymbol{v}-\boldsymbol{u}=\left(v_{x}-u_{x}\right) \boldsymbol{i}+\left(v_{y}-u_{y}\right) \boldsymbol{j}+\left(v_{z}-u_{z}\right) \boldsymbol{k} \tag{22.3}
\end{equation*}
$$

Brief illustration 22.1: Addition and subtraction

Consider the vectors $\boldsymbol{u}=\boldsymbol{i}-4 \boldsymbol{j}+\boldsymbol{k}$ (of magnitude 4.24) and $\boldsymbol{v}=-4 \boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ (of magnitude 5.39) Their sum is

$$
\boldsymbol{u}+\boldsymbol{v}=(1-4) \boldsymbol{i}+(-4+2) \boldsymbol{j}+(1+3) \boldsymbol{k}=-3 \boldsymbol{i}-2 \boldsymbol{j}+4 \boldsymbol{k}
$$

The magnitude of the resultant vector is $29^{1 / 2}=5.39$. The difference of the two vectors is

$$
\boldsymbol{u}-\boldsymbol{v}=(1+4) \boldsymbol{i}+(-4-2) \boldsymbol{j}+(1-3) \boldsymbol{k}=5 \boldsymbol{i}-6 \boldsymbol{j}-2 \boldsymbol{k}
$$

The magnitude of this resultant is 8.06 . Note that in this case the difference is longer than either individual vector.

3. Multiplication:

(a) The scalar product, or dot product, of the two vectors \boldsymbol{u} and \boldsymbol{v} is

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{v}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z} \tag{22.4}
\end{equation*}
$$

The scalar product of a vector with itself gives the square magnitude of the vector:

$$
\begin{equation*}
\boldsymbol{u} \cdot \boldsymbol{u}=u_{x}^{2}+u_{y}^{2}+u_{z}^{2}=u^{2} \tag{22.5}
\end{equation*}
$$

(b) The vector product, or cross product, of two vectors is

$$
\begin{align*}
\boldsymbol{u} \times \boldsymbol{v} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \\
& =\left(u_{y} v_{z}-u_{z} v_{y}\right) \boldsymbol{i}-\left(u_{x} v_{z}-u_{z} v_{x}\right) \boldsymbol{j}+\left(u_{x} v_{y}-u_{y} v_{x}\right) \boldsymbol{k} \tag{22.6}
\end{align*}
$$

(Determinants are discussed in The chemist's toolkit 23.) If the two vectors lie in the plane defined by the unit vectors \boldsymbol{i} and \boldsymbol{j}, their vector product lies parallel to the unit vector \boldsymbol{k}.

Brief illustration 22.2: Scalar and vector products

The scalar and vector products of the two vectors in Brief ilustration 22.1, $\boldsymbol{u}=\boldsymbol{i}-4 \boldsymbol{j}+\boldsymbol{k}$ (of magnitude 4.24) and $\boldsymbol{v}=$ $-4 \boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ (of magnitude 5.39) are

$$
\begin{aligned}
\boldsymbol{u} \cdot \boldsymbol{v}= & \{1 \times(-4)\}+\{(-4) \times 2\}+\{1 \times 3\}=-9 \\
\boldsymbol{u} \times \boldsymbol{v}= & \left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & -4 & 1 \\
-4 & 2 & 3
\end{array}\right| \\
= & \{(-4)(3)-(1)(2)\} \boldsymbol{i}-\{(1)(3)-(1)(-4)\} \boldsymbol{j}+\{(1)(2)- \\
& (-4)(-4)\} \boldsymbol{k} \\
= & -14 \boldsymbol{i}-7 \boldsymbol{j}-14 \boldsymbol{k}
\end{aligned}
$$

The vector product is a vector of magnitude 21.00 pointing in a direction perpendicular to the plane defined by the two individual vectors.

Further information

The manipulation of vectors is commonly represented graphically. Consider two vectors v and \boldsymbol{u} making an angle θ (Sketch 22.1a). The first step in the addition of \boldsymbol{u} to v consists of joining the tip (the 'head') of \boldsymbol{u} to the starting point (the 'tail') of v (Sketch 22.1b). In the second step, draw a vector $v_{\text {res }}$, the resultant vector, originating from the tail of \boldsymbol{u} to the head of \boldsymbol{v} (Sketch 22.1c). Reversing the order of addition leads to the same result; that is, the same $v_{\text {res }}$ is obtained whether \boldsymbol{u} is added to \boldsymbol{v} or \boldsymbol{v} to \boldsymbol{u}. To calculate the magnitude of $v_{\text {res }}$, note that

$$
\begin{align*}
v_{\mathrm{res}}^{2} & =(\boldsymbol{u}+\boldsymbol{v}) \cdot(\boldsymbol{u}+\boldsymbol{v})=\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{v} \cdot \boldsymbol{v}+2 \boldsymbol{u} \cdot \boldsymbol{v} \\
& =u^{2}+v^{2}+2 u v \cos \theta^{\prime} \tag{22.7a}
\end{align*}
$$

Sketch 22.1
where θ^{\prime} is the angle between \boldsymbol{u} and \boldsymbol{v}. In terms of the angle $\theta=\pi-\theta^{\prime}$ shown in the Sketch, and $\cos (\pi-\theta)=-\cos \theta$,

$$
\begin{equation*}
v_{\mathrm{res}}^{2}=u^{2}+v^{2}-2 u v \cos \theta \quad \text { Law of cosines } \tag{22.7b}
\end{equation*}
$$

which is the law of cosines for the relation between the lengths of the sides of a triangle.

Sketch 22.2
Subtraction of \boldsymbol{u} from \boldsymbol{v} amounts to addition of $-\boldsymbol{u}$ to \boldsymbol{v}. It follows that in the first step of subtraction \boldsymbol{u} is drawn by reversing the direction of \boldsymbol{u} (Sketch 22.2a). Then, the second step consists of adding $-\boldsymbol{u}$ to \boldsymbol{v} by using the strategy shown in the Sketch; a resultant vector $\boldsymbol{v}_{\text {res }}$ is drawn by joining the tail of $-\boldsymbol{u}$ to the head of \boldsymbol{v} (Sketch 22.2b).

Sketch 22.3

Vector multiplication is represented graphically by drawing a vector (using the right-hand rule) perpendicular to the plane defined by the vectors \boldsymbol{u} and \boldsymbol{v}, as shown in Sketch 22.3. Its length is equal to $u v \sin \theta$, where θ is the angle between \boldsymbol{u} and \boldsymbol{v}. Note that $\boldsymbol{u} \times \boldsymbol{v}$ (Sketch 22.3a) is opposite in direction to $\boldsymbol{v} \times \boldsymbol{u}$ (Sketch 22.3b).

