THE CHEMIST'S TOOLKIT 24 Matrices

A matrix is an array of numbers arranged in a certain number of rows and a certain number of columns; the numbers of rows and columns may be different. The rows and columns are numbered $1,2, \ldots$ so that the number at each position in the matrix, called the matrix element, has a unique row and column index. The element of a matrix M at row r and column c is denoted $M_{r c}$. For instance, a 3×3 matrix is

$$
\boldsymbol{M}=\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)
$$

The trace of a matrix, $\operatorname{Tr} \boldsymbol{M}$, is the sum of the diagonal elements.

$$
\begin{equation*}
\operatorname{Tr} \boldsymbol{M}=\sum_{n} M_{n n} \tag{24.1}
\end{equation*}
$$

In this case

$$
\operatorname{Tr} \boldsymbol{M}=M_{11}+M_{22}+M_{33}
$$

A unit matrix has diagonal elements equal to 1 and all other elements zero. A 3×3 unit matrix is therefore

$$
\mathbf{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Matrices are added by adding the corresponding matrix elements. Thus, to add the matrices \boldsymbol{A} and \boldsymbol{B} to give the sum $\boldsymbol{S}=\boldsymbol{A}+\boldsymbol{B}$, each element of \boldsymbol{S} is given by

$$
\begin{equation*}
S_{r c}=A_{r c}+B_{r c} \tag{24.2}
\end{equation*}
$$

Only matrices of the same dimensions can be added together.

Matrices are multiplied to obtain the product $\boldsymbol{P}=\boldsymbol{A B}$; each element of \boldsymbol{P} is given by

$$
\begin{equation*}
P_{r c}=\sum_{n} A_{r n} B_{n c} \tag{24.3}
\end{equation*}
$$

Matrices can be multiplied only if the number of columns in \boldsymbol{A} is equal to the number of rows in \boldsymbol{B}. Square matrices (those with the same number of rows and columns) can therefore be multiplied only if both matrices have the same dimension (that is, both are $n \times n$). The products $\boldsymbol{A B}$ and $\boldsymbol{B} \boldsymbol{A}$ are not necessarily the same, so matrix multiplication is in general 'non-commutative'.

Brief illustration 24.1: Matrix addition and multiplication
Consider the matrices

$$
\boldsymbol{M}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { and } \boldsymbol{N}=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

Their sum is

$$
\boldsymbol{S}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right)
$$

and their product is

$$
\begin{aligned}
\boldsymbol{P} & =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=\left(\begin{array}{ll}
1 \times 5+2 \times 7 & 1 \times 6+2 \times 8 \\
3 \times 5+4 \times 7 & 3 \times 6+4 \times 8
\end{array}\right) \\
& =\left(\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right)
\end{aligned}
$$

An $n \times 1$ matrix (with n elements in one column) is called a column vector. It may be multiplied by a square $n \times n$ matrix to generate a new column vector, as in

$$
\left(\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)=\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right) \times\left(\begin{array}{c}
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right)
$$

The elements of the two column vectors need only one index to indicate their row. Each element of \boldsymbol{P} is given by

$$
\begin{equation*}
P_{r}=\sum_{n} A_{r n} B_{n} \tag{24.4}
\end{equation*}
$$

A $1 \times n$ matrix (a single row with n elements) is called a row vector. It may be multiplied by a square $n \times n$ matrix to generate a new row vector, as in

$$
\left(\begin{array}{lll}
P_{1} & P_{2} & P_{3}
\end{array}\right)=\left(\begin{array}{lll}
B_{1} & B_{2} & B_{3}
\end{array}\right) \times\left(\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right)
$$

In general the elements of \boldsymbol{P} are

$$
\begin{equation*}
P_{c}=\sum_{n} B_{n} A_{n c} \tag{24.5}
\end{equation*}
$$

Note that a column vector is multiplied 'from the left' by the square matrix and a row vector is multiplied 'from the right'. The inverse of a matrix \boldsymbol{A}, denoted \boldsymbol{A}^{-1}, has the property that $\boldsymbol{A A ^ { - 1 }}=\boldsymbol{A}^{-1} \boldsymbol{A}=1$, where 1 is a unit matrix with the same dimensions as \boldsymbol{A}.

Brief illustration 24.2: Inversion

Mathematical software gives the following inversion of a matrix A :

$$
\begin{array}{cc}
\text { Matrix } & \text { Inverse } \\
A & A^{-1} \\
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) & A^{-1}=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

