THE CHEMIST'S TOOLKIT 26 Exponential and Gaussian functions

An exponential function is a function of the form

$$
\begin{equation*}
f(x)=a \mathrm{e}^{-b x} \tag{26.1}
\end{equation*}
$$

Exponential function
This function has the value a at $x=0$ and decays toward zero as $x \rightarrow \infty$. This decay is faster when b is large than when it is small. The function rises rapidly to infinity as $x \rightarrow-\infty$. See Sketch 26.1.

Sketch 26.1

The general form of a Gaussian function is

$$
\begin{equation*}
f(x)=a \mathrm{e}^{-(x-b)^{2} / 2 \sigma^{2}} \tag{26.2}
\end{equation*}
$$

The graph of this function is a symmetrical bell-shaped curve centred on $x=b$; the function has its maximum values of a at its centre. The width of the function, measured at half its height, is $\delta x=2 \sigma(2 \ln 2)^{1 / 2}$; the greater σ, the greater is the width at half-height. Sketch 26.1 also shows a Gaussian function with $b=0$ and $2 \sigma^{2}=1$.

