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Sketch 28.1
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A Fourier transform expresses any waveform as a super-
position of harmonic (sine and cosine) waves. If the wave-
form is S(t), then the contribution I(ν) of the oscillating 
function cos(2πνt) is given by the integral

I S t t t( ) ( )cos(2 )d
0∫ν ν= π
∞

� (28.1)

If the signal varies slowly, then the greatest contribution comes 
from low-frequency waves; rapidly changing features in the 
signal are reproduced by high-frequency contributions. If the 
signal is a simple exponential decay of the form S(t) = S0e−t/τ, 
the contribution of the wave of frequency ν is

I S t t S( ) e cos(2 )d
1 (2 )
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Sketch 28.1 shows a fast and slow decay and the corre-
sponding frequency contributions: note that a slow decay 
has predominantly low-frequency contributions and a fast 
decay has many high-frequency contributions.

If an experimental procedure results in the function I(ν) 
itself, then the corresponding signal can be reconstructed 
by forming the inverse Fourier transform:

S t I t( ) 2 ( )cos(2 )d
0∫ ν ν ν= π π
∞

� (28.3)

There are complex versions of these cosine transforms, as 
described below.

Fourier transforms are applicable to spatial functions 
too. Their interpretation is similar but it is more appropri-
ate to think in terms of the wavelengths of the contribut-
ing waves. Thus, if the function varies only slowly with 
distance, then its Fourier transform has mainly long-
wavelength contributions. If the features vary quickly 
with distance (as in the electron density in a crystal), then 
short-wavelength contributions feature.

Further information
Some insight into the physical significance of taking a 
Fourier transform can be obtained by considering the pro-
cess for analysing a wave of general form, like that at the 
top of each part of Sketch 28.2. According to eqn 28.1, the 
procedure involves forming the product of the waveform 
and a cosine wave with frequency ν, and then determining 
the area under the product. 
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Sketch 28.2
When S(t) is multiplied by a cosine wave with frequency 

10 Hz, the oscillations in the two functions largely coin-
cide, with the result that the product S t t( )cos(2 )νπ  has 
more positive peaks than negative peaks, and therefore 
a non-zero area. The wave of frequency 10 Hz, therefore 
makes a significant contribution. When the procedure is 
repeated with a cosine function oscillating at 20 Hz, the 
product also results in a non-zero area, so a cosine func-
tion oscillating at this frequency also makes a significant 
contribution to the original waveform. However, if the 
frequency of the cosine function is 30 Hz, the product 
has as many positive and negative peaks and the area is 
essentially zero. A cosine function at this frequency makes 
a negligible contribution to the waveform.
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The most general formulation of a Fourier transform is 
to express the function f(t) as a superposition of cosine and 
sine functions, not just cosine functions. The two types 
of functions can be handled simultaneously by using de 
Moivre’s relation x xe cos isinxi = +  and writing

�f t f( ) 1
2π ( )e d2 i∫ ν ν= νπ

−∞

∞
� (28.4a)

where �f ( )ν  is the Fourier transform of f(t), and can be 
interpreted as the amplitude of the contribution of the 
cosine and sine waves in the superposition that recreates 
the function f(t). The inverse relation is

�f f t t( ) ( )e dt2πi∫ν = ν−

−∞

∞
� (28.4b)

The cosine contribution is given by the real part of 
�f ( )ν  and the sine contribution is given by the imaginary 
part.

Brief illustration 28.1:  The Fourier transform of an 
oscillating, exponentially decaying wave

The introductory part of this Toolkit illustrated the result of 
a cosine Fourier transformation of an exponential decay. It 
is instructive to consider the complex version of that calcu-
lation and to generalize it to a function that oscillates with 
a frequency ν0 as it decays. To avoid the repetition of many 
factors of 2π, henceforth, write 2πν = ω. Then the (complex) 
function in the time domain is
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The observed signal is the real part of f(t), bearing in mind 
that xRe e cosxi = . See Sketch 28.3 (which also displays the 
Fourier transform, as explained below). The Fourier trans-
form of this function is
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The fraction of the right has both real an imaginary parts; 
they can be extracted by multiplying the numerator and 
denominator by the complex conjugate of the denominator
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The real part of �f ( )ν  is therefore
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which is essentially the same as in eqn 28.2 with the excep-
tion that the frequency 2πν = ω has been replaced by ω0 − ω.
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