THE CHEMIST'S TOOLKIT 29 Electrostatics

A charge Q_{1} (units: coulomb, C) gives rise to a Coulomb potential ϕ (units: volt, V), as explained in The chemist's toolkit 6 . The potential energy (units: joule, J , with $1 \mathrm{~J}=$ 1 VC) of a second charge Q in that potential is

$$
\begin{equation*}
E_{\mathrm{P}}=-Q \phi \tag{29.1}
\end{equation*}
$$

In one dimension, the electric field strength (units: volt per metre, $\mathrm{V} \mathrm{m}^{-1}$), \mathcal{E}, is the negative of the gradient of the electric potential ϕ :

$$
\begin{equation*}
\mathcal{E}=-\frac{\mathrm{d} \phi}{\mathrm{~d} x} \tag{29.2}
\end{equation*}
$$

Electric field strength

In three dimensions the electric field is a vector, and

$$
\begin{equation*}
\mathcal{E}=-\nabla \phi \tag{29.3}
\end{equation*}
$$

The electric field between two plane parallel plates separated by a distance l, and between which there is a potential difference $\Delta \phi$, is uniform and given by

$$
\begin{equation*}
E=-\frac{\Delta \phi}{l} \tag{29.4}
\end{equation*}
$$

A charge Q experiences a force proportional to the electric field strength at its location:

$$
\begin{equation*}
F_{\text {electric }}=Q E \tag{29.5}
\end{equation*}
$$

A potential gives rise to a force only if it varies with distance.

