THE CHEMIST'S TOOLKIT 30 Integration by the method of partial fractions

To solve an integral of the form

$$
\begin{equation*}
I=\int \frac{1}{(a-x)(b-x)} \mathrm{d} x \tag{30.1}
\end{equation*}
$$

where a and b are constants with $a \neq b$, use the method of partial fractions in which a fraction that is the product of terms (as in the denominator of this integrand) is written as a sum of fractions. To implement this procedure write the integrand as

$$
\frac{1}{(a-x)(b-x)}=\frac{1}{b-a}\left(\frac{1}{a-x}-\frac{1}{b-x}\right)
$$

Then integrate each term on the right. It follows that

$$
\begin{align*}
I & =\frac{1}{b-a}(\overbrace{\int \frac{\mathrm{~d} x}{a-x}}^{\text {A. } 2}-\overbrace{\int \frac{\mathrm{d} x}{b-x}}^{\text {A. } 2}) \\
& =\frac{1}{b-a}\left(\ln \frac{1}{a-x}-\ln \frac{1}{b-x}\right)+\text { constant } \tag{30.2}
\end{align*}
$$

Further information

Although the condition $a \neq b$ has been specified, the result is also valid for $a=b$ provided the equality is interpreted as the limit $b \rightarrow a$. Thus, write $b=a+\delta$, with $\delta \rightarrow 0$; then, by using $\ln (1+z)=z+1 / 2 z^{2}+\ldots=z+O\left(z^{2}\right)$,

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \frac{1}{b-a}\left(\ln \frac{1}{a-x}-\ln \frac{1}{b-x}\right) \\
& =\lim _{\delta \rightarrow 0} \frac{1}{a+\delta-a}\left(\ln \frac{1}{a-x}-\ln \frac{1}{a+\delta-x}\right) \\
& =\lim _{\delta \rightarrow 0} \frac{1}{\delta} \ln \frac{a+\delta-x}{a-x}=\lim _{\delta \rightarrow 0} \frac{1}{\delta} \ln \left(1+\frac{\delta}{a-x}\right) \\
& =\lim _{\delta \rightarrow 0} \frac{1}{\delta}\left(\frac{\delta}{a-x}+O\left(\delta^{2}\right)\right)=\frac{1}{a-x}
\end{aligned}
$$

That is, in this limit

$$
\int \frac{1}{(a-x)^{2}} \mathrm{~d} x=\frac{1}{a-x}+\text { constant }
$$

