THE CHEMIST'S TOOLKIT 25 Matrix methods for solving eigenvalue equations

In matrix form, an eigenvalue equation is

$$
\begin{equation*}
M x=\lambda x \tag{25.1a}
\end{equation*}
$$

Eigenvalue equation
where M is a square matrix with n rows and n columns, λ is a constant, the eigenvalue, and x is the eigenvector, an $n \times 1$ (column) matrix that satisfies the conditions of the eigenvalue equation and has the form:

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

In general, there are n eigenvalues $\lambda^{(i)}, i=1,2, \ldots, n$, and n corresponding eigenvectors $\boldsymbol{x}^{(i)}$. Equation 25.1a can be rewritten as

$$
\begin{equation*}
(M-\lambda 1) x=0 \tag{25.1b}
\end{equation*}
$$

where 1 is an $n \times n$ unit matrix, and where the property $1 x=x$ has been used. This equation has a solution only if the determinant $|M-\lambda \mathbf{l}|$ of the matrix $M-\lambda \mathbf{1}$ is zero. It follows that the n eigenvalues may be found from the solution of the secular equation:

$$
\begin{equation*}
|M-\lambda 1|=0 \tag{25.2}
\end{equation*}
$$

Brief illustration 25.1: Simultaneous equations

Consider the matrix equation

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda\binom{x_{1}}{x_{2}} \\
& \text { rearranged into }\left(\begin{array}{cc}
1-\lambda & 2 \\
3 & 4-\lambda
\end{array}\right)\binom{x_{1}}{x_{2}}=0
\end{aligned}
$$

From the rules of matrix multiplication, the latter form expands into

$$
\binom{(1-\lambda) x_{1}+2 x_{2}}{3 x_{1}+(4-\lambda) x_{2}}=0
$$

which is simply a statement of the two simultaneous equations

$$
(1-\lambda) x_{1}+2 x_{2}=0 \text { and } 3 x_{1}+(4-\lambda) x_{2}=0
$$

The condition for these two equations to have solutions is

$$
|M-\lambda \mathbf{1}|=\left|\begin{array}{cc}
1-\lambda & 2 \\
3 & 4-\lambda
\end{array}\right|=(1-\lambda)(4-\lambda)-6=0
$$

This condition corresponds to the quadratic equation

$$
\lambda^{2}-5 \lambda-2=0
$$

with solutions $\lambda=+5.372$ and $\lambda=-0.372$, the two eigenvalues of the original equation.

The n eigenvalues found by solving the secular equations are used to find the corresponding eigenvectors. To do so, begin by considering an $n \times n$ matrix \boldsymbol{X} the columns of which are formed from the eigenvectors corresponding to all the eigenvalues. Thus, if the eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots$, and the corresponding eigenvectors are

$$
\boldsymbol{x}^{(1)}=\left(\begin{array}{c}
x_{1}^{(1)} \tag{25.3a}\\
x_{2}^{(1)} \\
\vdots \\
x_{n}^{(1)}
\end{array}\right) \quad \boldsymbol{x}^{(2)}=\left(\begin{array}{c}
x_{1}^{(2)} \\
x_{2}^{(2)} \\
\vdots \\
x_{n}^{(2)}
\end{array}\right) \cdots \boldsymbol{x}^{(n)}=\left(\begin{array}{c}
x_{1}^{(n)} \\
x_{2}^{(n)} \\
\vdots \\
x_{n}^{(n)}
\end{array}\right)
$$

then the matrix \boldsymbol{X} is

$$
X=\left(\boldsymbol{x}^{(1)} \boldsymbol{x}^{(2)} \cdots \boldsymbol{x}^{(n)}\right)=\left(\begin{array}{cccc}
x_{1}^{(1)} & x_{1}^{(2)} & \cdots & x_{1}^{(n)} \tag{25.3b}\\
x_{2}^{(1)} & x_{2}^{(2)} & \cdots & x_{2}^{(n)} \\
\vdots & \vdots & & \vdots \\
x_{n}^{(1)} & x_{n}^{(2)} & \cdots & x_{n}^{(n)}
\end{array}\right)
$$

Similarly, form an $n \times n$ matrix Λ with the eigenvalues λ along the diagonal and zeroes elsewhere:

$$
\Lambda=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \tag{25.4}\\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Now all the eigenvalue equations $M x^{(i)}=\lambda_{i} x^{(i)}$ may be combined into the single matrix equation

$$
\begin{equation*}
M X=X \Lambda \tag{25.5}
\end{equation*}
$$

Brief illustration 25.2: Eigenvalue equations
In Brief illustration 25.1 it is established that if $\boldsymbol{M}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
then $\lambda_{1}=+5.372$ and $\lambda_{2}=-0.372$. Then, with eigenvectors

$$
\begin{aligned}
\boldsymbol{x}^{(1)}= & \binom{x_{1}^{(1)}}{x_{2}^{(1)}} \text { and } \boldsymbol{x}^{(2)}=\binom{x_{1}^{(2)}}{x_{2}^{(2)}} \text { form } \\
& \boldsymbol{X}=\left(\begin{array}{ll}
x_{1}^{(1)} & x_{1}^{(2)} \\
x_{2}^{(1)} & x_{2}^{(2)}
\end{array}\right) \quad \Lambda=\left(\begin{array}{cc}
5.372 & 0 \\
0 & -0.372
\end{array}\right)
\end{aligned}
$$

The expression $\boldsymbol{M X}=\boldsymbol{X} \boldsymbol{\Lambda}$ becomes

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x_{1}^{(1)} & x_{1}^{(2100)} \\
x_{2}^{(1)} & x_{2}^{(2)}
\end{array}\right)=\left(\begin{array}{ll}
x_{1}^{(1)} & x_{1}^{(2)} \\
x_{2}^{(1)} & x_{2}^{(2)}
\end{array}\right)\left(\begin{array}{cc}
5.372 & 0 \\
0 & -0.372
\end{array}\right)
$$

which expands to

$$
\left(\begin{array}{cc}
x_{1}^{(1)}+2 x_{2}^{(1)} & x_{1}^{(2)}+2 x_{2}^{(2)} \\
3 x_{1}^{(1)}+4 x_{2}^{(1)} & 3 x_{1}^{(2)}+4 x_{2}^{(2)}
\end{array}\right)=\left(\begin{array}{cc}
5.372 x_{1}^{(1)} & -0.372 x_{1}^{(2)} \\
5.372 x_{2}^{(1)} & -0.372 x_{2}^{(2)}
\end{array}\right)
$$

This is a compact way of writing the four equations

$$
\begin{array}{ll}
x_{1}^{(1)}+2 x_{2}^{(1)}=5.372 x_{1}^{(1)} & x_{1}^{(2)}+2 x_{2}^{(2)}=-0.372 x_{1}^{(2)} \\
3 x_{1}^{(1)}+4 x_{2}^{(1)}=5.372 x_{2}^{(1)} & 3 x_{1}^{(2)}+4 x_{2}^{(2)}=-0.372 x_{2}^{(2)}
\end{array}
$$

corresponding to the two original simultaneous equations and their two roots.

Finally, form X^{-1} from X and multiply eqn 25.5 by it from the left:

$$
\begin{equation*}
X^{-1} M X=X^{-1} X \Lambda=\Lambda \tag{25.6}
\end{equation*}
$$

A structure of the form $X^{-1} M X$ is called a similarity transformation. In this case the similarity transformation $X^{-1} M X$ makes M diagonal (because Λ is diagonal). It follows that if the matrix X that causes $X^{-1} M X$ to be diagonal is known, then the problem is solved: the diagonal matrix so produced has the eigenvalues as its only nonzero elements, and the matrix X used to bring about the transformation has the corresponding eigenvectors as its columns. In practice, the eigenvalues and eigenvectors are obtained by using mathematical software.

Brief illustration 25.3: Similarity transformations
To apply the similarity transformation to the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
from Brief illustration 25.1 it is best to use mathematical software to find the form of \boldsymbol{X} and \boldsymbol{X}^{-1}. The result is

$$
\boldsymbol{X}=\left(\begin{array}{cc}
0.416 & 0.825 \\
0.909 & -0.566
\end{array}\right) \quad \boldsymbol{X}^{-1}=\left(\begin{array}{cc}
0.574 & 0.837 \\
0.922 & -0.422
\end{array}\right)
$$

This result can be verified by carrying out the multiplication

$$
\begin{aligned}
\boldsymbol{X}^{-1} \boldsymbol{M} \boldsymbol{X} & =\left(\begin{array}{cc}
0.574 & 0.837 \\
0.922 & -0.422
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{cc}
0.416 & 0.825 \\
0.909 & -0.566
\end{array}\right) \\
& =\left(\begin{array}{cc}
5.372 & 0 \\
0 & -0.372
\end{array}\right)
\end{aligned}
$$

The result is indeed the diagonal matrix Λ calculated in Brief illustration 25.2. It follows that the eigenvectors $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are

$$
\boldsymbol{x}^{(1)}=\binom{0.416}{0.909} \quad \boldsymbol{x}^{(2)}=\binom{0.825}{-0.566}
$$

