
The chemist’s toolkit 25   Matrix methods 
for solving eigenvalue equations

In matrix form, an eigenvalue equation is 
Mx = λx� Eigenvalue equation   (25.1a)

where M is a square matrix with n rows and n columns, λ 
is a constant, the eigenvalue, and x is the eigenvector, an 
n × 1 (column) matrix that satisfies the conditions of the 
eigenvalue equation and has the form:
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In general, there are n eigenvalues λ(i), i = 1, 2, … , n, and 
n corresponding eigenvectors x(i). Equation 25.1a can be 
rewritten as

(M − λ1)x = 0� (25.1b)

where 1 is an n × n unit matrix, and where the property 
1x = x has been used. This equation has a solution only if the 
determinant |M − λ1| of the matrix M − λ1 is zero. It follows 
that the n eigenvalues may be found from the solution of the 
secular equation:

|M − λ1| = 0� (25.2)

Brief illustration 25.1:  Simultaneous equations

Consider the matrix equation
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From the rules of matrix multiplication, the latter form 
expands into
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which is simply a statement of the two simultaneous equa-
tions

(1 − λ)x1 + 2x2 = 0 and 3x1 + (4 − λ)x2 = 0

The condition for these two equations to have solutions is 
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This condition corresponds to the quadratic equation

λ2 − 5λ − 2 = 0

with solutions λ = +5.372 and λ = −0.372, the two 
eigenvalues of the original equation.

The n eigenvalues found by solving the secular equations 
are used to find the corresponding eigenvectors. To do so, 
begin by considering an n × n matrix X the columns of 
which are formed from the eigenvectors corresponding to 
all the eigenvalues. Thus, if the eigenvalues are λ1, λ2, …, and 
the corresponding eigenvectors are
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� (25.3a)

then the matrix X is
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� (25.3b)

Similarly, form an n × n matrix Λ with the eigenvalues λ 
along the diagonal and zeroes elsewhere:
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Now all the eigenvalue equations Mx(i) = λix(i) may be com-
bined into the single matrix equation

MX = XΛ � (25.5)

Brief illustration 25.2:  Eigenvalue equations

In Brief illustration 25.1 it is established that if 1 2
3 4

M =






 

then λ1 = +5.372 and λ2 = –0.372. Then, with eigenvectors 
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The expression MX = XΛ becomes
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which expands to
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This is a compact way of writing the four equations
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corresponding to the two original simultaneous equations 
and their two roots.

Finally, form X −1 from X and multiply eqn 25.5 by it 
from the left:

X −1MX = X −1XΛ = Λ� (25.6)

A structure of the form X −1MX is called a similarity 
transformation. In this case the similarity transforma-
tion X −1MX makes M diagonal (because Λ is diagonal). 
It follows that if the matrix X  that causes X −1MX to be 
diagonal is known, then the problem is solved: the diag-
onal matrix so produced has the eigenvalues as its only 
nonzero elements, and the matrix X  used to bring about 
the transformation has the corresponding eigenvectors 
as its columns. In practice, the eigenvalues and eigenvec-
tors are obtained by using mathematical software.

Brief illustration 25.3:  Similarity transformations

To apply the similarity transformation to the matrix 1 2
3 4
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from Brief illustration 25.1 it is best to use mathematical 
software to find the form of X and X −1. The result is
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This result can be verified by carrying out the multiplication 
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The result is indeed the diagonal matrix Λ calculated in 
Brief illustration 25.2. It follows that the eigenvectors x(1) 
and x(2) are
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