Example Web3.1. Using data in Table 3.1 and Appendix 1, calculate the entropy changes at $25^{\circ} \mathrm{C}$ and at $750^{\circ} \mathrm{C}$ for the following reactions:
(a) $\mathrm{C}_{\text {(graph) }}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
ΔS_{298}^{0} can be calculated using Equation 3.8 and the change on heating to the higher temperature using Equation 3.11. $750^{\circ} \mathrm{C}=1023 \mathrm{~K}$.
(a)

$$
\begin{aligned}
\Delta_{\mathrm{r}} S_{298}^{\mathrm{o}} & =\left[S_{298}^{\mathrm{o}}\left(\mathrm{CO}_{2}\right)\right]-\left[S_{298}^{\mathrm{o}}(\mathrm{C})+S_{298}^{\mathrm{o}}\left(\mathrm{O}_{2}\right)\right] \\
& =213.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-\left([5.7+205.1) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right. \\
& =2.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta \mathrm{C}_{\mathrm{p}} & =\left[C_{\mathrm{p}}\left(\mathrm{CO}_{2}\right)\right]-\left[C_{\mathrm{p}}(\mathrm{C})+C_{\mathrm{p}}\left(\mathrm{O}_{2}\right)\right] \\
& =37.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-(8.5+29.4) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =-0.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta_{\mathrm{r}} S_{1023}^{\mathrm{o}} & =2.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}+\left(-0.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times \ln \left(\frac{1023}{298}\right) \\
& =+1.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\Delta_{\mathrm{r}} S_{298}^{\mathrm{o}} & =\left[S_{298}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}\right)+S_{298}^{\mathrm{o}}\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)\right]-\left[S_{298}^{\mathrm{o}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)+S_{298}^{\mathrm{o}}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\right] \\
& =[69.9+259.4] \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-[159.8+160.7] \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =8.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta C_{\mathrm{p}} & =(75.3+170.1) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}-(124.3+111.5) \mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& =9.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta_{\mathrm{r}} S_{1023}^{\mathrm{o}} & =8.8 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}+9.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times \ln \left(\frac{1023}{298}\right) \\
& =20.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

The entropy change in (a) is relatively small since there are the same number of moles of gas in the reactants and the products. In reaction (c), all the components are in the liquid phase so that again the change in entropy is relatively small although it increases at the higher temperature.

Example Web3.2. The standard enthalpy and entropy changes for fusion of water are
$\Delta_{\text {fus }} H^{\circ}=+6.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta_{\text {fus }} S^{\circ}=+22.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Calculate the change in Gibbs energy when 1.00 mol of ice melts at: (a) $0^{\circ} \mathrm{C}$; (b) $10^{\circ} \mathrm{C}$; and (c) $-10^{\circ} \mathrm{C}$.

The Gibbs energy change can be calculated from Equation 3.14, $\Delta G=\Delta H-T \Delta S$
(a) $\quad 0^{\circ} \mathrm{C}=273 \mathrm{~K}$.

$$
\begin{aligned}
\Delta_{\text {fus }} G^{\circ} & =\Delta_{\text {fus }} H^{\circ}-T \Delta_{\text {fus }} S^{\circ} \\
& =+6.01 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}-\left[273 \mathrm{~K} \times\left(+22.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right] \\
& =0 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

(b) At $10^{\circ} \mathrm{C}(283 \mathrm{~K})$

$$
\begin{aligned}
\Delta_{\mathrm{fus}} G^{\circ} & =\Delta_{\mathrm{fus}} H^{\circ}-T \Delta_{\mathrm{fus}} S^{\circ} \\
& =+6.01 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}-\left[283 \mathrm{~K} \times\left(+22.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right] \\
& =-216 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c) $\mathrm{At}-10^{\circ} \mathrm{C}(263 \mathrm{~K})$

$$
\begin{aligned}
\Delta_{\text {fus }} G^{\circ} & =\Delta_{\text {fus }} H^{\circ}-T \Delta_{\text {fus }} S^{\circ} \\
& =+6.01 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}-\left[263 \mathrm{~K} \times\left(+22.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\right] \\
& =+224 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

At the melting temperature, T_{m}, the Gibbs energy change is zero. Above T_{m} melting has a negative
change in Gibbs energy and so is spontaneous; below T_{m} melting is not spontaneous and has a positive Gibbs energy change.

Example Web3.3. Find the standard Gibbs energy change at $25^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$ for the reaction involved in the Haber-Bosch process

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

From earlier calculations for the equation as written,

$$
\begin{aligned}
& \Delta_{\mathrm{r}} H^{\circ}{ }_{298}=-92.2 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \Delta_{\mathrm{r}} H^{\circ}{ }_{773}=-113.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\mathrm{r}} S^{\circ}{ }_{298}=-198.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { and } \Delta_{\mathrm{r}} \mathrm{~S}^{\circ}{ }_{773}=-241.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
$$

The Gibbs energy of reaction, $\Delta_{\mathrm{r}} G^{\circ}$, is calculated from Equation 3.14.

$$
\begin{aligned}
& \text { At } 298 \mathrm{~K} \quad \begin{aligned}
\Delta_{\mathrm{r}} G^{\circ}{ }_{298} & =\Delta_{\mathrm{r}} H^{\circ}{ }_{298}-T \Delta_{\mathrm{r}} S^{\circ}{ }_{298} \\
& =-92.2 \mathrm{~kJ} \mathrm{~mol}^{-1}-(298 \mathrm{~K})\left(-198.7 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
\text { At } 773 \mathrm{~K} \quad \Delta G^{\circ}{ }_{298} & =-33.0 \mathrm{~kJ} \mathrm{~mol}^{-1} . \\
\Delta_{\mathrm{r}} G^{\circ}{ }_{773} & =\Delta_{\mathrm{r}} H^{\circ}{ }_{773}-T \Delta_{\mathrm{r}} \mathrm{~S}^{\circ}{ }_{773} \\
& =-113.7 \mathrm{~kJ} \mathrm{~mol}^{-1}-(773 \mathrm{~K})\left(-241.9 \times 10^{-3} \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
\Delta_{\mathrm{r}} G^{\circ}{ }_{773} & =+73.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
\end{aligned}
$$

The reaction is spontaneous at $25^{\circ} \mathrm{C}$ but becomes non-spontaneous at the higher temperature mainly due to the unfavourable entropic term becoming dominant.

