Example Web5.1. The melting point of sodium (molar mass $22.99 \mathrm{~g} \mathrm{~mol}^{-1}$) is $97.8^{\circ} \mathrm{C}$ at 1 atm pressure. The densities at this temperature of the solid and liquid are $0.929 \mathrm{~g} \mathrm{~cm}^{-3}$ and 0.952 $\mathrm{g} \mathrm{cm}^{-3}$ respectively. The enthalpy of fusion is $3.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the melting point of sodium at a pressure of 120 atm .

From the Clapeyron equation, Equation 5.3,

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=\frac{\Delta_{\mathrm{fus}} H}{T_{\mathrm{m}} \Delta_{\mathrm{fus}} V}
$$

$\Delta_{\text {fus }} H$ is given as $3 \mathrm{~kJ} \mathrm{~mol}^{-1}=3.00 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $T_{\mathrm{m}}=97.8^{\circ} \mathrm{C}=370.95 \mathrm{~K}$.
$\mathrm{d} p$ is the change in pressure, $120 \mathrm{~atm}-1 \mathrm{~atm}=119 \mathrm{~atm} .1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$.
$\Delta_{\text {fus }} V$ can be found from the densities. It is the difference in molar volumes for liquid and solid.

$$
\begin{aligned}
\Delta_{\text {fus }} V & =V_{\mathrm{m}}(\text { liquid })-V_{\mathrm{m}}(\text { solid })=\left(\frac{22.99 \mathrm{~g} \mathrm{~mol}^{-1}}{0.929 \mathrm{~g} \mathrm{~cm}^{-3}}-\frac{22.99 \mathrm{~g} \mathrm{~mol}^{-1}}{0.952 \mathrm{~g} \mathrm{~cm}^{-3}}\right) \\
& =0.598 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

Substituting values and converting to SI units throughout

$$
\frac{\mathrm{d} p}{\mathrm{~d} T}=1.35 \times 10^{7} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-1}=1.35 \times 10^{7} \mathrm{~Pa} \mathrm{~K}^{-1}
$$

This shows that a pressure change of $1.35 \times 10^{7} \mathrm{~Pa}$ changes the melting point by 1 K . When the pressure changes to $120 \mathrm{~atm}, \mathrm{~d} p=119 \mathrm{~atm} \times 1.013 \times 10^{5} \mathrm{~Pa} \mathrm{~atm}^{-1}=1.21 \times 10^{7} \mathrm{~Pa}$. The change in melting point is therefore

$$
\begin{aligned}
& \frac{\mathrm{d} p}{\mathrm{~d} T}=1.35 \times 10^{7} \mathrm{~Pa} \mathrm{~K}^{-1} \\
& \mathrm{~d} T=\frac{1.21 \times 10^{7} \mathrm{~Pa}_{1}}{1.35 \times 10^{7} \mathrm{~Pa} \mathrm{~K}^{-1}}=0.900 \mathrm{~K}
\end{aligned}
$$

Thus, T_{m} increases by 0.900 K so that $T_{\mathrm{m}}(120 \mathrm{~atm})$ is $98.7^{\circ} \mathrm{C}$.

Example Web5.2 The normal boiling point of benzene is $80.1^{\circ} \mathrm{C}$ and the enthalpy of vaporization is $30.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the boiling point at a pressure of 10.0 kPa .

The normal boiling point is the temperature at which the vapour pressure becomes 1 atm or $1.013 \times 10^{5} \mathrm{~Pa}$. Using Equation 5.5.

$$
\begin{gathered}
\ln \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta_{\text {vap }} H}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{10.0 \times 10^{3} \mathrm{~Pa}}{1.013 \times 10^{5} \mathrm{~Pa}}\right)=\frac{30.8 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}{8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}\left(\frac{1}{(273.15+80.1) \mathrm{K}}-\frac{1}{T}\right)
\end{gathered}
$$

Hence

$$
(1 / T)=3.455 \times 10^{-3} \mathrm{~K}^{-1}
$$

so

$$
T=289.4 \mathrm{~K} \text { or } 16.2^{\circ} \mathrm{C}
$$

Example Web5.3. Calculate the changes in enthalpy, entropy, volume, and Gibbs energy on mixing 1.5 mol of hexane with 2.5 mol of heptane at $25^{\circ} \mathrm{C}$.

Hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$, and heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, can be assumed to form an ideal mixture.
For ideal solutions: $\Delta_{\text {mix }} H=\Delta_{\text {mix }} V=0$.
The other functions are given by Equations 5.19 and 5.20.
The mole fraction of hexane is $x_{\text {hexane }}=\frac{n_{\text {hexane }}}{n_{\text {hexane }}+n_{\text {heptane }}}=\frac{1.5}{1.5+2.5}=0.375$

$$
x_{\text {heptane }}=(1-0.375)=0.625
$$

$$
\Delta_{\text {mix }} G=R T \sum_{i} x_{i} \ln x_{i}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298.15 \mathrm{~K} \times\{0.375 \ln (0.375)+0.625 \ln
$$

(0.625) \}

$$
=-1640 \mathrm{~J} \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
\Delta_{\text {mix }} S & =-R \sum_{i} x_{i} \ln x_{i}=-8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times\{0.375 \ln (0.375)+0.625 \ln (0.625)\} \\
& =+5.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Note that the formation of the solution is 'driven' by the greater disorder in the mixture over that of the pure liquids.

