1 Basic algebra and arithmetic

(1) The pH scale of acidity is a logarithmic measure of the (molar) concentration of hydrogen ions present in an aqueous solution: $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$. How many times more concentrated are the H^{+}ions in a solution of pH 1 compared to a solution of pH 6 ?

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Longleftrightarrow \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

Denoting the concentration of H^{+}ions in a solution with $\mathrm{pH} x$ as $\left[\mathrm{H}^{+}\right]_{x}$

$$
\frac{\left[\mathrm{H}^{+}\right]_{1}}{\left[\mathrm{H}^{+}\right]_{6}}=\frac{10^{-1}}{10^{-6}}=10^{-1} 10^{6}=10^{-1+6}=\underline{10^{5}}
$$

$$
10^{5}=100000
$$

(2) By letting $A=a^{\mathrm{M}}$ and $B=a^{N}$, and using the definition of a logarithm, show that

$$
\log (A B)=\log (A)+\log (B) \quad \text { and } \quad \log (A / B)=\log (A)-\log (B)
$$

Similarly, show that

$$
\log \left(A^{\beta}\right)=\beta \log (A) \quad \text { and } \quad \log _{b}(A)=\log _{a}(A) \times \log _{b}(a)
$$

$$
\begin{aligned}
\mathrm{A} & =a^{\mathrm{M}} \Longleftrightarrow \mathrm{M}=\log _{a}(\mathrm{~A}) \\
B & =a^{\mathrm{N}} \Longleftrightarrow \mathrm{~N}=\log _{a}(\mathrm{~B}) \\
\text { But } \quad \mathrm{AB} & =a^{\mathrm{M}} a^{\mathrm{N}}=a^{\mathrm{M}+\mathrm{N}} \\
\therefore \quad \log _{a}(\mathrm{AB}) & =\log _{a}\left(a^{\mathrm{M}+\mathrm{N}}\right)=\mathrm{M}+\mathrm{N}=\log _{a}(\mathrm{~A})+\log _{a}(B)
\end{aligned}
$$

This result holds for logarithms to any base, because we did not specify the value of a above.

$$
\text { i.e. } \quad \underline{\log (A B)}=\log (A)+\log (B)
$$

$$
\frac{1}{B}=\frac{1}{a^{N}}=a^{-N} \Longleftrightarrow \log _{a}\left(\frac{1}{B}\right)=\log _{a}\left(a^{-N}\right)=-\mathrm{N}=-\log _{a}(B)
$$

Hence, using the previous result for the logarithm of the product of A and $1 / B$, we obtain

$$
\begin{gathered}
\underline{\log (A / B)=\log (A)-\log (B)} \\
A^{\beta}=\left(a^{\mathrm{M}}\right)^{\beta}=a^{\mathrm{M} \beta} \Longleftrightarrow \log _{a}\left(A^{\beta}\right)=\log _{a}\left(a^{\mathrm{M} \beta}\right)=\mathrm{M} \beta=\beta \log _{a}(A) \\
\text { i.e. } \underline{\log \left(A^{\beta}\right)=\beta \log (A)} \\
\log _{b}(A)=\log _{b}\left(a^{\mathrm{M}}\right)=\mathrm{M} \log _{b}(a) \Longrightarrow \log _{b}(A)=\log _{a}(A) \times \log _{b}(a)
\end{gathered}
$$

(3) Derive the formula for the two solutions of the quadratic equation $a x^{2}+b x+c=0$.

$$
\begin{aligned}
& \text { If } a \neq 0, \quad x^{2}+\frac{b x}{a}+\frac{c}{a}=0 \\
& \therefore \quad\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0 \\
& \therefore \quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}\left(\frac{4 a}{4 a}\right)=\frac{b^{2}-4 a c}{4 a^{2}} \\
& \therefore x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \text { i.e. } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

While this formula is only valid for $a \neq 0$, the case of $a=0$ is even simpler as we then just have $b x+c=0$. This linear equation has the solution $x=-c / b$.
(4) For what values of k does $x^{2}+k x+4=0$ have real roots?

Using the general formula for the roots of a quadratic, which was derived in the previous question

$$
x=\frac{-k \pm \sqrt{k^{2}-16}}{2}
$$

For the values of x to be real, the quantity to be square rooted $\left(b^{2}-4 a c\right)$ must not be negative. Hence, we require that $k^{2} \geqslant 16$.

$$
\therefore \quad|k| \geqslant 4
$$

In other words, k has to be less than -4 or greater than +4 .

(5) Derive the formulae for the sums of an arithmetic progression and a geometric progression.

$$
\begin{align*}
& \text { Let } a+(a+d)+(a+2 d)+\cdots+(l-2 d)+(l-d)+l=\mathrm{S}_{\mathrm{N}}-(1 \tag{1}\\
& \quad \text { where } \quad l=a+(\mathrm{N}-1) d \\
& \therefore \quad l+(l-d)+(l-2 d)+\cdots+(a+2 d)+(a+d)+a=\mathrm{S}_{\mathrm{N}}-(2)
\end{align*}
$$

$$
(1)+(2) \Rightarrow(a+l)+(a+l)+\cdots+(a+l)+(a+l)=2 \mathrm{~S}_{\mathrm{N}}
$$

$$
\therefore \mathrm{N}(a+l)=\mathrm{N}[2 a+(\mathrm{N}-1) d]=2 \mathrm{~S}_{\mathrm{N}}
$$

$$
\therefore \quad S_{N}=\underline{\text { Sum of } A P}=\frac{\mathrm{N}}{2}[2 a+(\mathrm{N}-1) d]
$$

$$
\text { Let } a+a r+a r^{2}+\cdots+a r^{\mathrm{N}-2}+a r^{\mathrm{N}-1} \quad=\mathrm{S}_{\mathrm{N}}-(3)
$$

$$
r \times(3) \Rightarrow \quad a r+a r^{2}+\cdots+a r^{N-2}+a r^{N-1}+a r^{N}=r S_{N} \quad-(4)
$$

$$
\begin{aligned}
& (3)-(4) \Rightarrow a\left(1-r^{\mathrm{N}}\right)=(1-r) \mathrm{S}_{\mathrm{N}} \\
& \therefore \quad \mathrm{~S}_{\mathrm{N}}=\text { Sum of GP }=\frac{a\left(1-r^{\mathrm{N}}\right)}{1-r}
\end{aligned}
$$

(6) By expressing a recurring decimal number as the sum of an infinite GP, show that $0.121212 \cdots=4 / 33$. What is $0.3181818 \cdots$ as a fraction?

$$
\begin{aligned}
0.12121212 \cdots & =0.12+0.0012+0.000012+\cdots \\
& =\text { sum of infinite GP with } a=0.12 \text { and } r=0.01 \\
& =\frac{0.12}{1-0.01} \\
& =\frac{12}{99}
\end{aligned}
$$

$$
\therefore \quad 0.12121212 \cdots=4 / 33
$$

$$
\begin{aligned}
0.318181818 \cdots & =0.3+0.018+0.00018+0.0000018+\cdots \\
& =\frac{3}{10}+\frac{0.018}{1-0.01} \\
& =\frac{3}{10}+\frac{18}{990} \\
& =\frac{33}{110}+\frac{2}{110}=\frac{35}{110}
\end{aligned}
$$

$\therefore 0.318181818 \cdots=7 / 22$

