2 Curves and graphs

(1) Find the equation of the parabola that passes through the three points $(0,3),(3,0)$, and $(5,8)$; what are the roots of the equation?

General equation of a parabola is $y=a x^{2}+b x+c$.
\(\left.\begin{array}{lll}Passes through(0,3) \& \Rightarrow \& 3=

Passes through(3,0) \& \Rightarrow \& 0=9 a+3 b+c

Passes through(5,8) \& \Rightarrow \& 8=25 a+5 b+c\end{array}\right\}\)| $c=3$ |
| :--- |
| $a=1$ |
| $b=-4$ |

\therefore Equation of parabola is $y=x^{2}-4 x+3$

For roots, $y=0 \Rightarrow x^{2}-4 x+3=(x-3)(x-1)=0$
i.e. $x=1$ and $x=3$
(2) Given that the exponential dominates for large x, sketch the functions $y=x \mathrm{e}^{-x}$ and $y=x^{2} \mathrm{e}^{-x}$ for $x \geqslant 0$.

Close to the origin, $x \ll 1$, $\mathrm{e}^{-x} \approx 1$, and so the shape of the curves is determined by the exponential prefactors: a linear rise for $x \mathrm{e}^{-x}$, and a parabolic increase for $x^{2} \mathrm{e}^{-x}$. For large x, both curves decay to zero.

(3) What is the centre and radius of the circle $x^{2}-2 x+y^{2}+4 y-4=0$?

$$
\begin{aligned}
x^{2}-2 x+y^{2}+4 y & =4 \\
\therefore \quad(x-1)^{2}-1+(y+2)^{2}-4 & =4 \\
\therefore \quad(x-1)^{2}+(y+2)^{2} & =9=3^{2}
\end{aligned}
$$

i.e. centre is at $(1,-2)$ and radius $=3$

This 'completing the square' transformation of the original equation into the form $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ is useful because it then becomes obvious that we have a circle with centre $\left(x_{0}, y_{0}\right)$ and radius r. Alternatively, we could remember that $x^{2}+y^{2}+2 g x+2 h y+c=0$ is a general equation for a circle; its centre is at $(-g,-h)$ and the radius is $\sqrt{g^{2}+h^{2}-c}$.
(4) Sketch the ellipse $3 x^{2}+4 y^{2}=3$; evaluate its eccentricity, and indicate the positions of the focus and directrix.

The simplest form for the equation of an ellipse is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where the centre is at the origin and the principal axes are aligned with the x and y axes, and of width $2 a$ and $2 b$ respectively. This is the case for

$$
x^{2}+\frac{4}{3} y^{2}=1
$$

where $a=1$ and $b=\sqrt{3} / 2$.

The eccentricity ϵ is related to a and b through $b^{2}=a^{2}\left(1-\epsilon^{2}\right)$, giving $\epsilon=1 / 2$. The foci are at $(\pm a \epsilon, 0)$, or $(\pm 1 / 2,0)$, and the two directrices are the straight lines $x= \pm a / \epsilon= \pm 2$.
(5) Sketch the hyperbola $x^{2}-y^{2}=1$, and mark in the asymptotes.

(6) By first factorizing the equation, or otherwise, sketch the function $\left(x^{2}+y^{2}\right)^{2}-4 x^{2}=0$.

The expression is of the form $a^{2}-b^{2}$, and can be factorized as $(a-b)(a+b)$:

$$
\begin{gathered}
\\
\\
\left(x^{2}+y^{2}-2 x\right)\left(x^{2}+y^{2}+2 x\right)=0 \\
\therefore
\end{gathered} \quad x^{2}-2 x+y^{2}=0 \quad \text { or } \quad x^{2}+2 x+y^{2}=0
$$

Two circles of radius 1 , with centres at $(1,0)$ and ($-1,0$).

If the factorization hint had not been given, or spotted, then an obvious way of reducing the complexity of the given equation would be to write it as

$$
\left(x^{2}+y^{2}\right)^{2}=4 x^{2}
$$

and take the square root of both sides. This gives

$$
x^{2}+y^{2}= \pm 2 x
$$

which also leads to the equation of the two circles above.

