Curves and graphs

(1) Find the equation of the parabola that passes through the three points (0,3), (3,0), and (5,8); what are the roots of the equation?

General equation of a parabola is $y = ax^2 + bx + c$.

Passes through $(0,3) \Rightarrow$		c = 3
Passes through $(3,0) \Rightarrow$	0 = 9a + 3b + c	a = 1
Passes through $(5, 8) \Rightarrow$	8 = 25a + 5b + c	b = -4

 \therefore Equation of parabola is $y = x^2 - 4x + 3$

For roots,
$$y = 0 \Rightarrow x^2 - 4x + 3 = (x - 3)(x - 1) = 0$$

i.e. x = 1 and x = 3

(2) Given that the exponential dominates for large x, sketch the functions $y = x e^{-x}$ and $y = x^2 e^{-x}$ for $x \ge 0$.

Close to the origin, $x \ll 1$, $e^{-x} \approx 1$, and so the shape of the curves is determined by the exponential prefactors: a linear rise for $x e^{-x}$, and a parabolic increase for $x^2 e^{-x}$. For large x, both curves decay to zero.

(3) What is the centre and radius of the circle $x^2 - 2x + y^2 + 4y - 4 = 0$?

$$x^{2} - 2x + y^{2} + 4y = 4$$

$$\therefore (x - 1)^{2} - 1 + (y + 2)^{2} - 4 = 4$$

$$\therefore (x - 1)^{2} + (y + 2)^{2} = 9 = 3^{2}$$

i.e. centre is at (1, -2) and radius = 3

This 'completing the square' transformation of the original equation into the form $(x - x_0)^2 + (y - y_0)^2 = r^2$ is useful because it then becomes obvious that we have a circle with centre (x_0, y_0) and radius r. Alternatively, we could remember that $x^2 + y^2 + 2gx + 2hy + c = 0$ is a general equation for a circle; its centre is at (-g, -h) and the radius is $\sqrt{g^2 + h^2 - c}$.

(4) Sketch the ellipse $3x^2 + 4y^2 = 3$; evaluate its eccentricity, and indicate the positions of the focus and directrix.

The simplest form for the equation of an ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where the centre is at the origin and the principal axes are aligned with the x and y axes, and of width 2a and 2b respectively. This is the case for

$$x^2 + \frac{4}{3}y^2 = 1$$

where a = 1 and $b = \sqrt{3}/2$.

The eccentricity ϵ is related to a and b through $b^2 = a^2(1 - \epsilon^2)$, giving $\epsilon = 1/2$. The foci are at $(\pm a\epsilon, 0)$, or $(\pm 1/2, 0)$, and the two directrices are the straight lines $x = \pm a/\epsilon = \pm 2$.

The expression is of the form $a^2 - b^2$, and can be factorized as (a - b)(a + b):

$$(x^2 + y^2 - 2x)(x^2 + y^2 + 2x) = 0$$

$$\therefore \quad x^2 - 2x + y^2 = 0 \quad \text{or} \quad x^2 + 2x + y^2 = 0$$

i.e. $(x-1)^2 + y^2 = 1 \quad \text{or} \quad (x+1)^2 + y^2 = 1$

If the factorization hint had not been given, or spotted, then an obvious way of reducing the complexity of the given equation would be to write it as

$$(x^2 + y^2)^2 = 4x^2$$

and take the square root of both sides. This gives

$$x^2 + y^2 = \pm 2x$$

which also leads to the equation of the two circles above.