(1) Given that

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{\sqrt{\pi}}{2} \quad \text { and } \quad \lim _{x \rightarrow \infty} x^{n} \mathrm{e}^{-x^{2}}=0
$$

calculate

$$
I_{n}=\int_{0}^{\infty} x^{n} \mathrm{e}^{-\beta x^{2}} \mathrm{~d} x
$$

where β is a positive constant and n is a non-negative integer.

Substituting $y=x \sqrt{\beta}$, so that $\mathrm{d} y=\mathrm{d} x \sqrt{\beta}$,

$$
I_{0}=\int_{0}^{\infty} \mathrm{e}^{-\beta x^{2}} \mathrm{~d} x=\frac{1}{\sqrt{\beta}} \int_{0}^{\infty} \mathrm{e}^{-y^{2}} \mathrm{~d} y=\frac{1}{2} \sqrt{\frac{\pi}{\beta}}
$$

The $n=1$ case is straightforward because, to within a constant, the integrand is the derivative of $\mathrm{e}^{-\beta x^{2}}$:

$$
I_{1}=\int_{0}^{\infty} x \mathrm{e}^{-\beta x^{2}} \mathrm{~d} x=\left[-\frac{1}{2 \beta} \mathrm{e}^{-\beta x^{2}}\right]_{0}^{\infty}=\frac{1}{2 \beta}
$$

For $n>1, I_{n}$ can be related to I_{0} or I_{1} with a reduction formula:

$$
\begin{aligned}
I_{n} & =\int_{0}^{\infty} x^{n-1} x \mathrm{e}^{-\beta x^{2}} \mathrm{~d} x \\
& =\underbrace{\left[-x^{n-1} \frac{1}{2 \beta} \mathrm{e}^{-\beta x^{2}}\right]_{0}^{\infty}}_{0}+\frac{(n-1)}{2 \beta} \underbrace{\int_{0}^{\infty} x^{n-2} \mathrm{e}^{-\beta x^{2}} \mathrm{~d} x}_{I_{n-2}}
\end{aligned}
$$

Hence

$$
I_{n}=\frac{(n-1)}{2 \beta} I_{n-2}=\frac{(n-1)}{2 \beta} \frac{(n-3)}{2 \beta} I_{n-4}=\cdots
$$

with the recursive chain continuing until we reach I_{0} or I_{1}, depending on the parity of n. This leads to the result

$$
I_{n}=\frac{(n-1)}{2 \beta} \frac{(n-3)}{2 \beta} \frac{(n-5)}{2 \beta} \cdots \begin{cases}\cdots \frac{4}{2 \beta} \frac{2}{2 \beta} I_{1} & \text { for } n \text { odd } \\ \cdots \frac{3}{2 \beta} \frac{1}{2 \beta} I_{0} & \text { for } n \text { even }\end{cases}
$$

Or, more compactly,

$$
I_{n}=\frac{\left(\frac{n-1}{2}\right)!}{2 \sqrt{\beta^{n+1}}} \text { for } n \text { odd } \quad \text { and } \quad I_{n}=\frac{n!}{(n / 2)!2^{n+1}} \sqrt{\frac{\pi}{\beta^{n+1}}} \text { for } n \text { even }
$$

These results enable the characteristic speeds of gas molecules to be calculated, because their distribution in equilibrium at temperature T is given by

$$
\mathrm{f}(v)=A v^{2} \mathrm{e}^{-\beta v^{2}} \quad \text { with } \beta=\frac{m}{2 \mathrm{kT}}
$$

where $v \geqslant 0$ is the speed, m is the mass of the gas particle, k is the Boltzmann constant, and A is the normalization factor ensuring that

$$
\int_{0}^{\infty} \mathrm{f}(v) \mathrm{d} v=A \underbrace{\int_{0}^{\infty} v^{2} \mathrm{e}^{-\beta v^{2}} \mathrm{~d} v}_{I_{2}}=1
$$

$$
A=4 \sqrt{\frac{\beta^{3}}{\pi}}=\frac{m}{\mathrm{kT}} \sqrt{\frac{2 m}{\pi \mathrm{kT}}}
$$

The average speed, $\langle v\rangle$, is given by

$$
<v>=\int_{0}^{\infty} v \mathrm{f}(v) \mathrm{d} v=A \underbrace{\int_{0}^{\infty} v^{3} \mathrm{e}^{-\beta v^{2}} \mathrm{~d} v}_{I_{3}}=\frac{I_{3}}{I_{2}}=\frac{2}{\sqrt{\pi \beta}}
$$

$$
<v>=\sqrt{\frac{8 \mathrm{kT}}{\pi m}}
$$

while the root-mean-square speed, v_{rms}, is slightly higher:

$$
v_{\mathrm{rms}}^{2}=\left\langle v^{2}\right\rangle=\int_{0}^{\infty} v^{2} \mathrm{f}(v) \mathrm{d} v=A \underbrace{\int_{0}^{\infty} v^{4} \mathrm{e}^{-\beta v^{2}} \mathrm{~d} v}_{I_{4}}=\frac{I_{4}}{I_{2}}=\frac{3}{2 \beta} \quad v_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{m}}
$$

$$
\begin{aligned}
\left.\frac{\mathrm{df}}{\mathrm{~d} v}\right|_{v_{\max }} & =0 \\
\Rightarrow v_{\max } & =\sqrt{\frac{2 \mathrm{kT}}{m}}
\end{aligned}
$$

