13 Ordinary differential equations

(1) In a simple sequential reaction scheme, $A \rightarrow B \rightarrow C$, compound A is converted to B which then turns into C. If the concentrations of A, B and C at time t are a, b and c, respectively, solve the associated first-order simultaneous differential equations

$$
-\frac{\mathrm{d} a}{\mathrm{~d} t}=k_{1} a, \quad-\frac{\mathrm{d} b}{\mathrm{~d} t}=-k_{1} a+k_{2} b \quad \text { and } \quad \frac{\mathrm{d} c}{\mathrm{~d} t}=k_{2} b
$$

where k_{1} and k_{2} are the rate constants for the consecutive steps, and the initial $(t=0)$ concentrations are $a=a_{0}, b=0$ and $c=0$.

The first equation is separable, so that

$$
\int \frac{\mathrm{d} a}{a}=-k_{1} \int \mathrm{~d} t \quad \Rightarrow \quad \ln a=\alpha-k_{1} t
$$

where the boundary condition, $a(0)=a_{0}$, gives the constant of integration as $\alpha=\ln a_{\mathrm{o}}$. Taking exponentials,

$$
a=a_{0} \mathrm{e}^{-k_{1} t}
$$

Substituting this into the second equation,

$$
\frac{\mathrm{d} b}{\mathrm{~d} t}+k_{2} b=k_{1} a_{\circ} \mathrm{e}^{-k_{1} t}
$$

which can be solved by multiplying through by the integrating factor $\mathrm{e}^{k_{2} t}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[b \mathrm{e}^{k_{2} t}\right]=a_{\mathrm{o}} k_{1} \mathrm{e}^{\left(k_{2}-k_{1}\right) t}
$$

Integrating both sides with respect to t,

$$
b \mathrm{e}^{k_{2} t}=\frac{a_{\mathrm{o}} k_{1}}{k_{2}-k_{1}} \mathrm{e}^{\left(k_{2}-k_{1}\right) t}+\beta
$$

where $b(0)=0$ requires that $\beta=-a_{\circ} k_{1} /\left(k_{2}-k_{1}\right)$. Hence,

$$
b=\frac{a_{\circ} k_{1}}{k_{2}-k_{1}}\left[\mathrm{e}^{-k_{1} t}-\mathrm{e}^{-k_{2} t}\right]
$$

This could be substituted into the third equation to ascertain $c(t)$, but a simpler way of solving the final part of the problem is to realize that the sum of the three concentrations is fixed and equal to a_{0} :

$$
\frac{\mathrm{d} a}{\mathrm{~d} t}+\frac{\mathrm{d} b}{\mathrm{~d} t}+\frac{\mathrm{d} c}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t}(a+b+c)=0 \quad \Rightarrow \quad a+b+c=\gamma
$$

where the constant $\gamma=a(0)+b(0)+c(0)=a_{\mathrm{o}}$. This leads to

$$
c=a_{\circ}-\frac{a_{\circ}}{k_{2}-k_{1}}\left[k_{2} \mathrm{e}^{-k_{1} t}-k_{1} \mathrm{e}^{-k_{2} t}\right]
$$

While the behaviour of $b(t)$ and $c(t)$ is not immediately obvious when $k_{1}=k_{2}$, it follows from a careful consideration of the limit $k_{1} \rightarrow k_{2}$. Alternatively, setting $k_{1}=k_{2}=k$ explicitly from the outset gives $a=a_{\circ} \mathrm{e}^{-k t}$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[b \mathrm{e}^{k t}\right]=a_{\circ} k \quad \Rightarrow \quad b=a_{\circ} k t \mathrm{e}^{-k t}
$$

and leads to

$$
c=a_{\circ}\left[1-(1+k t) \mathrm{e}^{-k t}\right]
$$

The solution for the three concentrations are illustrated graphically below for the cases $k_{2}=2 k_{1}$ and $k_{1}=2 k_{2}$.

