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(1) The most general form of the solution to the one-dimensional wave
equation is: y(x, t) = G(x+ct) + H(x−ct), where G and H must be
determined from suitable boundary conditions. Use this to solve the
wave equation when

∂y

∂t
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t= 0

= 0 and y(x,0) =

{
f(x) for 0< x< L

0 otherwise

What happens if, additionally, (a) y(0, t) = 0 with x⩾ 0 ; and
(b) y= 0 at both x= 0 and x= L with 0⩽ x⩽ L?

Defining u = x+ ct and v = x− ct, so that y = G(u)+H(v),
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When t= 0, u = v = x and the first boundary condition gives
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t= 0

= c

[
dG

dx
− dH

dx

]
= 0

Integration with respect to x then tells us that the functions G and H are the
same to within an additive constant (K, say): G(x) = H(x)+ K. Substituting this
into the second t= 0 boundary condition,

y(x,0) = G(x)+H(x) = 2H(x)+ K =

{
f(x) for 0< x< L

0 otherwise

Hence
H(x) = 1

2 f(x)− K
2 and G(x) = 1

2 f(x)+ K
2

for 0< x< L; otherwise, H = −K/2 and G = K/2. Replacing x with u in G, and
v in H,

G(x+ct) =

{
1
2 f(x+ct) for −ct < x < L−ct

0 otherwise
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and

H(x−ct) =

{
1
2 f(x−ct) for ct < x < L+ct

0 otherwise

We have omitted the arbitrary constant, K, because it cancels when G and H are
added to obtain the solution y(x, t) = G(x+ct) + H(x−ct).

(a) To satisfy the constraint that y= 0 when x= 0, for all time t, we require

y(0, t) = G(ct) + H(−ct) = 0

This means that G must be antisymmetric with respect to H. Earlier, however, we
noted that the functional form of G and H was the same (to within an arbitrary
additive constant that could be set to zero). Hence

H(x) = G(x) = −H(−x)

To additionally ensure that y(0, t) = 0, therefore,

−H(−x) = −G(−x) = G(x) = H(x) =

{
1
2 f(x) for 0< x< L

0 x⩾ L

Then we simply replace x with u in G, and v in H, to obtain y = G(u)+H(v).

(b) To also satisfy the constraint that y= 0 when x= L , we require

y(L, t) = G(L+ct) + H(L−ct) = 0

Since G and H have the same functional form, and are antisymmetric, they now
need to be periodic as well:

y(L, t) = H(L+ct)︸ ︷︷ ︸
ϕ

− H(−L+ct)︸ ︷︷ ︸
ϕ−2L

= 0

Hence
−G(−u) = G(u) = 1

2 f(u) for 0 < u=x+ct < L

and
−H(−v) = H(v) = 1

2 f(v) for 0 < v=x−ct < L

with G(u) = G(u+2L) and G(v) = G(v+2L).


