14

Partial differential equations

(1) The most general form of the solution to the one-dimensional wave equation is: $y(x, t)=\mathrm{G}(x+c t)+\mathrm{H}(x-c t)$, where G and H must be determined from suitable boundary conditions. Use this to solve the wave equation when

$$
\left.\frac{\partial y}{\partial t}\right|_{t=0}=0 \quad \text { and } \quad y(x, 0)=\left\{\begin{array}{cr}
\mathrm{f}(x) & \text { for } 0<x<\mathrm{L} \\
0 & \text { otherwise }
\end{array}\right.
$$

What happens if, additionally, (a) $y(0, t)=0$ with $x \geqslant 0$; and (b) $y=0$ at both $x=0$ and $x=\mathrm{L}$ with $0 \leqslant x \leqslant \mathrm{~L}$?

Defining $u=x+c t$ and $v=x-c t$, so that $y=\mathrm{G}(u)+\mathrm{H}(v)$,

$$
\delta y \approx \frac{\mathrm{dG}}{\mathrm{~d} u} \delta u+\frac{\mathrm{dH}}{\mathrm{~d} v} \delta v \Rightarrow\left(\frac{\partial y}{\partial t}\right)_{x}=\frac{\mathrm{dG}}{\mathrm{~d} u} \underbrace{\left.\frac{\partial u}{\partial t}\right)_{x}}_{c}+\frac{\mathrm{dH}}{\mathrm{~d} v} \underbrace{\left.\frac{\partial v}{\partial t}\right)_{x}}_{-c}
$$

When $t=0, u=v=x$ and the first boundary condition gives

$$
\left.\frac{\partial y}{\partial t}\right|_{t=0}=c\left[\frac{\mathrm{dG}}{\mathrm{~d} x}-\frac{\mathrm{dH}}{\mathrm{~d} x}\right]=0
$$

Integration with respect to x then tells us that the functions G and H are the same to within an additive constant (K, say): $\mathrm{G}(x)=\mathrm{H}(x)+K$. Substituting this into the second $t=0$ boundary condition,

$$
y(x, 0)=\mathrm{G}(x)+\mathrm{H}(x)=2 \mathrm{H}(x)+\mathrm{K}=\left\{\begin{array}{cr}
\mathrm{f}(x) & \text { for } 0<x<\mathrm{L} \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence

$$
\mathrm{H}(x)=\frac{1}{2} \mathrm{f}(x)-\frac{K}{2} \quad \text { and } \quad \mathrm{G}(x)=\frac{1}{2} \mathrm{f}(x)+\frac{K}{2}
$$

for $0<x<\mathrm{L}$; otherwise, $\mathrm{H}=-\mathrm{K} / 2$ and $\mathrm{G}=K / 2$. Replacing x with u in G , and v in H ,

$$
\mathrm{G}(x+c t)=\left\{\begin{array}{cc}
\frac{1}{2} \mathrm{f}(x+c t) & \text { for }-c t<x<\mathrm{L}-c t \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\mathrm{H}(x-c t)=\left\{\begin{array}{cc}
\frac{1}{2} \mathrm{f}(x-c t) & \text { for } c t<x<\mathrm{L}+c t \\
0 & \text { otherwise }
\end{array}\right.
$$

We have omitted the arbitrary constant, K, because it cancels when G and H are added to obtain the solution $y(x, t)=\mathrm{G}(x+c t)+\mathrm{H}(x-c t)$.
(a) To satisfy the constraint that $y=0$ when $x=0$, for all time t, we require

$$
y(0, t)=\mathrm{G}(c t)+\mathrm{H}(-c t)=0
$$

This means that G must be antisymmetric with respect to H. Earlier, however, we noted that the functional form of G and H was the same (to within an arbitrary additive constant that could be set to zero). Hence

$$
\mathrm{H}(x)=\mathrm{G}(x)=-\mathrm{H}(-x)
$$

To additionally ensure that $y(0, t)=0$, therefore,

$$
-\mathrm{H}(-x)=-\mathrm{G}(-x)=\mathrm{G}(x)=\mathrm{H}(x)=\left\{\begin{array}{cr}
\frac{1}{2} \mathrm{f}(x) & \text { for } 0<x<\mathrm{L} \\
0 & x \geqslant \mathrm{~L}
\end{array}\right.
$$

Then we simply replace x with u in G , and v in H , to obtain $y=\mathrm{G}(u)+\mathrm{H}(v)$.
(b) To also satisfy the constraint that $y=0$ when $x=\mathrm{L}$, we require

$$
y(\mathrm{~L}, t)=\mathrm{G}(\mathrm{~L}+c t)+\mathrm{H}(\mathrm{~L}-c t)=0
$$

Since G and H have the same functional form, and are antisymmetric, they now need to be periodic as well:

$$
y(\mathrm{~L}, t)=\mathrm{H}(\underbrace{\mathrm{~L}+c t}_{\phi})-\mathrm{H}(\underbrace{-\mathrm{L}+c t}_{\phi-2 \mathrm{~L}})=0
$$

Hence

$$
-\mathrm{G}(-u)=\mathrm{G}(u)=\frac{1}{2} \mathrm{f}(u) \quad \text { for } 0<u=x+c t<\mathrm{L}
$$

and

$$
-\mathrm{H}(-v)=\mathrm{H}(v)=\frac{1}{2} \mathrm{f}(v) \quad \text { for } 0<v=x-c t<\mathrm{L}
$$

with $\mathrm{G}(u)=\mathrm{G}(u+2 \mathrm{~L})$ and $\mathrm{G}(v)=\mathrm{G}(v+2 \mathrm{~L})$.

