Box 8.1 Units used for the rate constant

The velocity (v) of a reaction is measured in units that represent a change in concentration of the product per unit time (for example, as $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$) and the concentration of each reactant $[\mathrm{R}]$ has units of $\mathrm{mol} \mathrm{L}^{-1}$. So, for a reaction with two reactants:

$$
\begin{aligned}
& \begin{array}{l}
\text { Rate (velocity) of } \\
\text { chemical reaction }
\end{array} \\
& \qquad \begin{array}{l}
\text { Rate constant of } \\
\text { chemical reaction }
\end{array} \\
& \qquad v=k_{[}[\mathrm{A}][\mathrm{B}]
\end{aligned}
$$

The units of the rate constant of a reaction depend on the overall order of the reaction. If the velocity of a reaction is directly proportional to the concentration of one of the reactants, it is
known as a first order reaction, as the rate depends on the concentration of the reactant raised to the power of 1 . In first order reactions, k_{r} has the units:

$$
\frac{\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}}{\mathrm{~mol} \mathrm{~L}^{-1}}=\mathrm{s}^{-1}
$$

If the rate of a reaction is proportional to the square of the concentration of a reactant (that is, the concentration raised to the power of 2 , or to the product of the concentration of two reactants, as in the example above) it is known as a second order reaction. In this case, the units for k_{r} are:

$$
\frac{\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}}{\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}}=\mathrm{L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
$$

