Chapter 6 Exercises

- 1. Predict the structure of and describe the bonding in the product formed from the reaction between diborane, B₂H₆, and ammonia, NH₃.
- **Answer**. This is a simple Lewis acid-Lewis base reaction in which the lone pair on the ammonia acts as the Lewis base through donation to the empty orbital on borane (BH₃) which acts as the Lewis acid. This is shown graphically below. Remember that B₂H₆ effectively acts as a source of BH₃.

The product formed, H_3BNH_3 or ammonia-borane, is isoelectronic with ethane (C_2H_6) and the B–N bond can be represented in either of the ways shown in the graphic.

2. Write down the reactions expected between K₂O and water and between Cl₂O and water and comment on the acidity or basicity of the resulting solutions.

Answer. K₂O reacts with water to give 2 KOH which is a source of [OH]⁻ so that solutions are basic.

$$K_2O + H_2O \rightarrow 2 \text{ KOH}$$

 Cl_2O reacts with water to form CIOH which dissociates to form $H^{\scriptscriptstyle +}$ and the CIO $^{\scriptscriptstyle -}$ anion so solutions are acidic.

$$Cl_2O + H_2O \rightarrow 2 CIOH$$

Dissociation of the E-O-H unit(s) where E = K or Cl is in accordance with charge separation due to element electronegativity differences.

- 3. Consider whether SF₄ violates the octet rule.
- Answer. We can start by using VSEPR to predict the structure of SF₄ from which we deduce that it has 5 electron pairs which point towards the vertices of a trigonal bipyramid. There are 4 S–F bond pairs and one lone pair so the lone pair goes equatorial and SF₄ therefore has the structure shown in the diagram below with two axial S–F bonds and two equatorial S–F bonds.

The simplest way to consider the bonding is to assign sp² hybridisation to the S centre such that the two equatorial S–F bonds and the lone pair involve these three sp² hybrid orbitals. The remaining unhybridized p orbital then forms part of a three-centre, four-electron interaction (3c,4e) with the two axial fluorines. An MO description of this 3c,4e interaction is exactly in accord with that described for the I_3 ⁻ anion and XeF₂ in the text. An MO diagram is shown below. The key point to appreciate is that the bonding F–S–F orbital has a contribution from all three atoms whereas the non-bonding F–S–F orbital is localized exclusively on the two fluorines. The total number of electrons associated with the S centre is therefore 8: the F–S–F bonding orbital referred to above, the two equatorial S–F bond pairs and the S lone pair. On this basis, SF₄ can be said not to violate the octet rule as it only has a total of 8 electrons associated with the S centre.

