Algebra IV

Fractions and percentages

Answers to additional problems

5.1 Using eqn. (5.7), the percentage yield $=\frac{0.069 \mathrm{~mol}}{0.105 \mathrm{~mol}} \times 100=66 \%$.
5.2 We calculate the overall yield of ligand using a form of eqn. (5.1), overall yield of ligand $=($ yield of step 1$) \times($ yield of step 2$) \times($ yield of step 3$)$
so overall yield $=\frac{2}{3} \times \frac{22}{23} \times \frac{4}{10}=\frac{2 \times 22 \times 4}{3 \times 23 \times 10}=\frac{176}{690}$ or 0.255 .
You could also cancel by a factor of 2 in the first expression

$$
\text { overall yield }=\frac{1}{3} \times \frac{22}{23} \times \frac{4}{5}=\frac{1 \times 22 \times 4}{3 \times 23 \times 5}=\frac{88}{345}=0.255
$$

It's more conventional to write this result as a percentage: the overall yield is 25.5%.
5.3 The majority of the second term is a constant, so we write $\frac{2 z_{+} z_{-} e^{2}}{\frac{1}{2} d \varepsilon}=\frac{k}{1 / 2}$. Inserting terms in template eqn. (5.5) yields, $k \times \frac{2}{1}=2 k$.

Therefore, the second term is $2 \times \frac{2 z_{+} z_{-} e^{2}}{d \varepsilon}=\frac{4 z_{+} z_{-} e^{2}}{d \varepsilon}$
In solid-state chemistry, it is usual not to rearrange this equation in order to emphasize the factor of $1 / 2$.
5.4 Inserting numbers into eqn. (5.4) yields, $\frac{3}{4}-\frac{1}{17}=\frac{(3 \times 17)-(1 \times 4)}{4 \times 17}=\frac{51-4}{68}=\frac{47}{68} \mathrm{~mol}$.

It might be more usual to then express this amount as a decimal, writing 0.691 mol .
5.5 The empirical formula of vitamin $\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$.

The mass of carbon is $6 \times 12 \mathrm{~g}=72 \mathrm{~g}$.
The mass of hydrogen is $8 \times 1 \mathrm{~g}=8 \mathrm{~g}$.
The mass of oxygen is $6 \times 16 \mathrm{~g}=96 \mathrm{~g}$.
The molar mass is therefore $(72+8+96) \mathrm{g}=176 \mathrm{~g}$.
Inserting numbers in eqn. (5.10),

$$
\begin{aligned}
& \% \text { carbon }=\frac{72}{176} \times 100=41 \% \\
& \% \text { hydrogen }=\frac{8}{176} \times 100=4.6 \% \\
& \% \text { oxygen }=\frac{96}{176} \times 100=54.4 \%
\end{aligned}
$$

The elemental composition of Vitamin C is 41% carbon, 4.6% hydrogen, and 54.4% oxygen. The sum of these three percentages is 100%.
5.6 As a fraction, we express the yield as $\left(\frac{0.85}{1.25}\right)$. As a decimal, the yield is 0.68 . To express this number as a percentage, we multiply this decimal by 100,

$$
\%=0.68 \times 100=68 \% .
$$

5.7 If the cost increases by $1 / 3$, then the cost will be $(1+1 / 3)$ times that initially. If the sum cannot be obtained intuitively, it may be quantified using eqn. (5.3),

$$
\frac{1}{1}+\frac{1}{3}=\frac{(1 \times 3)+1}{1 \times 3}=\frac{4}{3} .
$$

The new price is then $4 / 3 \times £ 12.50$ per $\mathrm{kg}=£ 16.67$ per kg. Perhaps the users need to find another supplier.
5.8 Inserting numbers into eqn. (5.6), $x_{\mathrm{B}}=\frac{3.2 \mathrm{~mol}}{(4.5+3.2+11.6) \mathrm{mol}}=\frac{3.2}{19.3}=0.166$.

Expressed as a percentage, $x_{\mathrm{B}}=16.6 \%$.
5.9 If the concentration is 30%, then every 100 ml of solution contains 30 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$. By simple proportions, 150 ml of solution requires 45 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$,

$$
\text { Amount of } \mathrm{H}_{2} \mathrm{O}_{2}=\frac{30 \%}{100} \times 150 \mathrm{ml}=45 \mathrm{ml}
$$

The remainder $(150-45) \mathrm{ml}=105 \mathrm{ml}$ will be deionized water.
5.10 Using a variant of eqn. (5.3),

$$
\frac{1}{40}+\frac{2}{55}+\frac{3}{80}=\frac{1 \times(55 \times 80)+2 \times(40 \times 80)+3 \times(40 \times 55)}{40 \times 55 \times 80} \mathrm{~mol}
$$

Notice how the denominator comprises each of the three denominators from the three source fractions. Each of the three terms in the numerator follows a pattern. The number outside the bracket is the numerator from the original fraction. The two numbers inside the bracket are the denominators from the two other fractions.

$$
\text { After multiplying the terms, we have } \frac{4400+6400+6600}{176000}=\frac{17400}{176000}
$$

This last result can be simplified by cancelling to $87 / 880 \mathrm{~mol}$, which equates to 9.89×10^{-2} mol of Abacavir.

