Algebra V
 Rearranging simple equations

Answers to additional problems

6.1

1. Cancelling the k_{1} terms yields rate $=\frac{k_{1} k_{2}^{2}}{k_{1} k_{2} k_{3}} \quad \rightarrow \quad$ rate $=\frac{k_{2}^{2}}{k_{2} k_{3}}$
2. We then cancel one of the k_{2} terms \quad rate $=\frac{k_{2}^{2}}{k_{2} k_{3}} \rightarrow$ rate $=\frac{k_{2}}{k_{3}}$
3. We multiply both sides by $k_{3} \quad k_{3} \times$ rate $=k_{2}$
4. We divide both sides by 'rate' $k_{3}=\frac{k_{2}}{\text { rate }}$
6.2 Rewriting the data in the form of an equation yields,

$$
m_{\text {sample }}+0.250 \mathrm{~g}=12.443 \mathrm{~g}
$$

A mass of 0.250 g has been ADDED to $m_{\text {sample }}$ So we reverse this operation and sUBTRACT this mass from both sides of the equation,

$$
\begin{aligned}
& m_{\text {sample }}+0.250 \mathrm{~g}-0.250 \mathrm{~g}=12.443 \mathrm{~g}-0.250 \mathrm{~g} \\
& \text { so } m_{\text {sample }}=12.443 \mathrm{~g}-0.250 \mathrm{~g}=12.193 \mathrm{~g} .
\end{aligned}
$$

1. We multiply both sides by [ethane], K [ethane] $=\left[\mathrm{H}_{2}\right]$ [ethene]
2. We then divide both sides by [ethene], $\left[\mathrm{H}_{2}\right]=\frac{K[\text { ethane }]}{[\text { ethene }]}$
6.4 The top line is effectively a bracket and can be written as $(v-u)$. We cannot do anything to the v term without doing the same to the u term.
3. We first multiply both sides by t,

$$
a t=v-u
$$

2. We then $\operatorname{ADD} u$ to both sides,

$$
v=u+a t
$$

Notice how we swapped the two sides of the equation in this last line, to ensure v is the subject.
6.5 We first divide both sides by the proton concentration term, $\frac{K_{a}}{\left[\mathrm{H}^{+}\right]^{2}}=\frac{\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]}$

We then multiply both sides of the equation by the concentration of undissociated acid,

$$
\left[\mathrm{SO}_{4}^{2-}\right]=\frac{K_{a}\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]}{\left[\mathrm{H}^{+}\right]^{2}}
$$

6.6 The concentration c has been multiplied by ε and by ℓ. We must therefore reverse the operation and divide by them. Unlike Worked Example 6.6, we will divide by the compound term $\varepsilon \boldsymbol{\ell}$,

$$
\begin{aligned}
A & =\varepsilon c \ell \rightarrow \frac{A}{\varepsilon \ell}=\frac{\varepsilon c \ell}{\varepsilon \swarrow} \\
\text { so } c & =\frac{A}{\varepsilon \ell}
\end{aligned}
$$

6.7 273.15 has been ADDED to t to yield T so we reverse this operation and sUBTRACT 273.15 from both sides,

$$
\begin{aligned}
& T-273.15=t+2.73 .15-2.73 .15 \\
\text { so } t & =T-273.15
\end{aligned}
$$

6.8 k_{2} has been multiplied by the two concentration terms, [acid] [alcohol], so we reverse the operation by dividing both sides of the equation by [acid] \times [alcohol],

$$
\frac{\text { rate }}{[\text { acid][alcohol] }]}=\frac{k_{2} \text { [acid] [alcohol] }}{\text { [acid] [alcohol] }}
$$

so $k_{2}=\frac{\text { rate }}{\text { [acid][alcohol] }}$
6.9 We start by rewriting the data in a more manageable way.

- In words: $1 \mathrm{dm}^{3}$ of solution of concentration $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ contains 0.2 mol .
- As an equation: $1 \mathrm{dm}^{3} \times 0.2 \mathrm{~mol} \mathrm{dm}^{-3}=0.2 \mathrm{~mol}$

Note how we retain the units here to help prove the equation is valid.
Next, as one litre contains $1000 \mathrm{~cm}^{3}$, we divide by 1000 to determine how much thiosulphate is contained in only one cm^{3},

$$
\frac{1 \mathrm{dm}^{3} \times 0.2 \mathrm{~mol} \mathrm{dm}^{-3}}{1000}=\frac{0.2 \mathrm{~mol}}{1000}
$$

But we don't want $1 \mathrm{~cm}^{3}$. We want 25 so we multiply both sides by 25 ,

$$
25 \times \frac{1 \mathrm{dm}^{3} \times 0.2 \mathrm{~mol} \mathrm{dm}^{-3}}{1000}=25 \times \frac{0.2 \mathrm{~mol}}{1000}
$$

We see $25 \mathrm{~cm}^{3}$ of solution contains $(25 \times 0.2) / 1000 \mathrm{~mol}=0.005 \mathrm{~mol}$, or 5 mmol .
6.10 The compound term $T \Delta S^{\ominus}$ has been subtracted from ΔH^{\ominus}, so we must reverse the operation and $\operatorname{ADD} T \Delta S^{\ominus}$ to both sides of the equation,

$$
\begin{aligned}
& \quad \Delta G^{\ominus}+T \Delta S^{\ominus}=\Delta H^{\ominus}-T \Delta S^{\ominus}+T \Delta \delta^{\ominus} \\
& \text { so } \quad \Delta H^{\ominus}=\Delta G^{\ominus}+T \Delta S^{\ominus}
\end{aligned}
$$

