۲

Algebra VI *Multiplying brackets and factorizing*

Answers to additional problems

7.1 The concentration term [B] occurs twice, so we combine them, writing,

$$-k_{-1}$$
 [B] $-k_{2}$ [B] = $(-k_{-1} - k_{2})$ [B]

Since both terms within the bracket are negative, we can additionally factorize out the minus sign, and rearrange the order to write, $-[B](k_{-1} + k_2)$

The rate equation therefore becomes, rate = k_1 [A] – [B] ($k_{-1} + k_2$) + k_{-2} [C]

7.2 Before we factorize this expression, it's useful to recognize how $(\sigma/r)^{12}$ is the same as $((\sigma/r)^6)^2$. Accordingly, we can write the equation as,

energy =
$$4\varepsilon \left\{ \left(\frac{\sigma}{r}\right)^6 \times \left(\frac{\sigma}{r}\right)^6 - \left(\frac{\sigma}{r}\right)^6 \right\}$$

The $\sigma \div r$ terms are repeated, so we can factorize saying,

energy =
$$4\varepsilon \left(\frac{\sigma}{r}\right)^6 \left\{ \left(\frac{\sigma}{r}\right)^6 - 1 \right\}$$

7.3 The left-hand side merely becomes $(\text{force})^2$ and the '-k' term becomes $+k^2$.

The square of the bracket is

1 = x^2 2 = $-x\bar{x}$ 3 = $-\bar{x}x$ 4 = $+\bar{x}^2$

Terms 2 and 3 are written in a different order but are otherwise the same. The square of the bracket is, $x^2 - 2x \overline{x} + \overline{x}^2$

The overall square of the equation is, $(\text{force})^2 = k^2 (x^2 - 2x \overline{x} + \overline{x}^2)$.

7.4 To factorize this expression, we first note how 34 000 is exactly 20 times 1 700. We rewrite the expression, as $\Delta G^{\Theta} = (20 \times 1700) - 1700 T$

This latter version of the expression readily factorizes, as $\Delta G^{\Theta} = 1700 (20 - T)$.

7.5 Multiplying the bracket c(p-1) yields cp - c. The expression is therefore,

DF = cp + 2 - p - cp + c

The two *cp* terms cancel to give, DF = 2 - p + c.

• The final ' + ' arises because the cp - c term is subtracted and two minuses make a plus.

۲

• This is the standard form of the Gibbs phase rule.

۲

()

2 7: Algebra VI

7.6 Equation (7.3) says $(a^2 - b^2)$ as (a - b) (a + b). Comparing the bracketed portion of the Rydberg equation with this template allows us to factorize our equation as the difference of two squares,

We say
$$\frac{1}{n_1^2}$$
 is a^2 and $\frac{1}{n_2^2}$ in eqn. (7.3) is b^2 so the bracket factorizes as, $\tilde{v} = \Re_H \left(\frac{1}{n_1} - \frac{1}{n_2}\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$

7.7 Within the scheme we have adopted, a = 4, b = -3, and c = -2.

۲

The formula is,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
. Inserting values for *a*, *b*, and *c* yields,

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 4(-2)}}{2 \times 4}$$
$$x = \frac{-3 \pm \sqrt{9 - (-32)}}{8} = \frac{-3 \pm \sqrt{41}}{8} = \frac{-3 \pm 6.40}{8}$$
$$\frac{-3 - 6.40}{8} \text{ or } \frac{-3 + 6.40}{8}$$
$$-0.425 \text{ or } 1.175$$
$$x = -0.425 \text{ or } 1.175$$

and x = -0.425 or 1.175.

We can state side₁ = \sqrt{d} , side₂ = 3, side_{longest} = 2d.

SO

7.8

Inserting terms into the equation for Pythagoras' theorem (side _1^2 + side_2^2 = side_{longest}^2) yields,

$$(2d)^2 = (\sqrt{d})^2 + 3^2$$
$$4d^2 = d + 9$$

Rearranging slightly yields, $0 = 4d^2 - d - 9$.

Factorizing with the formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where a = 4, b = -1, and c = -9.

Yields,
$$d = \frac{-(1) \pm \sqrt{(-1)^2 - 4 \times 4 \times -9}}{2 \times 4} = d = \frac{+1 \pm \sqrt{1 + 144}}{8}$$

Therefore, d = 1.63 or -1.38. A negative length is ludicrous and has no actual meaning so the length d is 1.63.

7.9 Following Worked Example 7.16, 1 mole of un-ionized acid is converted into 1 mole of H⁺ ions and 1 mole of anion,

we say
$$K = \frac{cx^2}{(1-x)}$$

so,
$$1.75 \times 10^{-5} = \frac{cx^2}{(1-x)}$$
, where $c = 0.1$

Cross-multiplying by (1-x) gives, $1.75 \times 10^{-5} \times (1-x) = 0.1 \times x^2$. And elementary rearranging yields,

 $0 = 0.1x^2 + 1.75 \times 10^{-5}x - 1.75 \times 10^{-5}$

Inserting terms into the formula yields,

$$x = \frac{-1.75 \times 10^{-5} \pm \sqrt{\left(1.75 \times 10^{-5}\right)^2 - 4 \times 0.1 \times \left(-1.75 \times 10^{-5}\right)}}{2 \times 0.1}$$

Subsequent manipulation yields, $x = 1.32 \times 10^{-2}$ or -1.32×10^{-2} .

۲

۲

()

7: Algebra VI

3

()

• We discard the negative root because it cannot represent reality. A concentration at equilibrium cannot itself be negative.

۲

- The concentration of the proton, $cx = 0.1 \times 1.32 \times 10^{-2} = 1.32 \times 10^{-3} \text{ mol dm}^{-3}$.
- The proportion of the acid that dissociates is 1.3 percent so ethanoic acid is a weak acid.

7.10 The coefficient of *x* is 1 and the second term is 18 so, using Equation 7.5, the perfect square is $(x + 9)^2$. This bracket expands to form, $x^2 + 18x + 81$. The difference between this equation and source equation is 11. We factorize as, $(x + 9)^2 - 11 = 0$.

To determine the value of *x* that satisfies the equation, we say, $(x + 9)^2 = 11$

 $x + 9 = \pm \sqrt{11}$, and $x = \pm \sqrt{11} - 9$

To 4 s.f., x = 3.317 - 9 = -5.683x = -3.317 - 9 = -12.317

()

۲