Powers I

Introducing indices and powers

Answers to additional problems

9.1 In the equation $A = \ell^2$, the operation is a SQUARE on ℓ . The reverse operation is a SQUARE ROOT, so $\ell = \sqrt{A}$. Accordingly, $\ell = \sqrt{7.2} = 2.68$ cm.

۲

9.2 Simple rearranging yields, $I = \frac{V}{R}$

We then insert the numbers, $I = \frac{100V}{10^{12}\Omega} = \frac{10^2V}{10^{12}\Omega}$.

Using the second laws of powers, eqn. (9.5), we could then say, $I = 10^{(2-12)} \text{ A} = 10^{-10} \text{ A}$.

9.3 We first make the term $D^{\frac{2}{3}}$ the equation's subject, remembering that, $\frac{1}{a^{-\frac{1}{3}}} = a^{\frac{1}{3}}$

$$D^{\frac{2}{3}} = \frac{Iv^{\frac{1}{6}}}{0.62 \, nFAc_{\text{analyte}} \omega^{\frac{1}{2}}}$$

A power of $\frac{3}{2}$ means the square of the third root. The inverse function takes the inverse power which is the $\frac{3}{2}$ power,

$$\left(D^{\frac{2}{3}}\right)^{\frac{3}{2}} = \left(\frac{Iv^{\frac{1}{6}}}{0.62\,nFAc_{\text{analyte}}\omega^{\frac{1}{2}}}\right)^{\frac{3}{2}}$$

The powers in the left-hand side vanish, as intended, to leave *D*,

Accordingly,
$$D = \left(\frac{Iv^{\frac{1}{2}}}{0.62 \, nFAc_{\text{analyte}} \omega^{\frac{1}{2}}}\right)^3$$

Alternatively, we can divide keeping the negative index, $D^{\frac{2}{3}} = \left(\frac{I}{0.62 \, nFAc_{\text{analyte}} \omega^{\frac{1}{2}} v^{-\frac{1}{6}}}\right)^{\frac{2}{3}}$ and $\left(D^{\frac{2}{3}}\right)^{\frac{3}{2}} = \left(\frac{I}{0.62 \, nFAc_{\text{analyte}} \omega^{\frac{1}{2}} v^{-\frac{1}{6}}}\right)^{\frac{3}{2}}$ leading to, $D = \left(\frac{I}{0.62 \, nFAc_{\text{analyte}} \omega^{\frac{1}{2}} v^{-\frac{1}{6}}}\right)^{\frac{3}{2}}$

9.4 We start with the equation, $I = 0.62 nFA c_{analyte} D^{4/2} w^{-1/2} w^{-1/4}$ from Additional Problem 9.3. We recall how a power of $\frac{1}{2}$ is the same as a square root, and $\frac{1}{6}$ is a sixth root. *D* raised to a power of $\frac{2}{3}$ is the same as the third root of D^2 . All terms written with no power in fact have a power of 1, so no root sign is needed.

We can therefore write,

$$I = \left(\frac{0.62 \, nFAc_{\text{analyte}} \sqrt[3]{D^2} \sqrt{\omega}}{\sqrt[6]{\nu}}\right)$$

09-Monk-Chap09.indd 1

۲

()

۲

2

9: Powers I

9.5 Firstly, the powers of 1 are a nonsense. We rewrite as $E = hc \lambda^{-1}$.

 (\bullet)

Next, λ^{-1} is the same as $1/\lambda^{+1} = 1/\lambda$.

So
$$E = hc \times 1/\lambda = \frac{hc}{\lambda}$$

- **9.6** The unit in the numerator (top line) will be simply mol¹ or just mol. The IUPAC unit of length is the metre m, so the IUPAC unit of volume is m^3 . Accordingly, the denominator (bottom line) is $(m^3)^{-1} = m^{-3}$. So the IUPAC unit of concentration is mol m^{-3} .
- 9.7 Multiplying out the bracket yields, energy = $4\varepsilon \left(\frac{1}{r}\right)^{12} 4\varepsilon \left(\frac{1}{r}\right)^{6}$

Rewriting in terms of indices, we obtain, $4 \varepsilon (r^{-1})^{12} - 4 \varepsilon (r^{-1})^6 = 4 \varepsilon r^{-12} - 4 \varepsilon r^{-6}$

- The version of the Lennard–Jones equation here has been simplified for this problem.
- **9.8** First, we introduce the indices, $\omega = (2\pi c)^{-1} \left(\frac{k}{\mu}\right)^{\frac{1}{2}}$

Second, we split the bracketed term, $\omega = 2^{-1} \pi^{-1} c^{-1} k^{\frac{1}{2}} (1/\mu^{\frac{1}{2}})$

Thirdly, we simplify the final term, writing it in terms of indices, $\omega = 2^{-1} \pi^{-1} c^{-1} k^{\frac{1}{2}} \mu^{-\frac{1}{2}}$

In words, the compound unit 'cm³ dm⁻³' is 'cubic centimetres per cubic decimetre.'

()

9.9

 $V = 100 \,\mathrm{dm^3} = 100 \,\mathrm{dm^3} \times 1\,000 \,\mathrm{cm^3} \,\mathrm{dm^{-3}}$

Cancelling units yields, $V = 100 \text{ dm}^3 = 100 \times 1000 \text{ cm}^3$

Therefore, $V = 10^2 \times 10^3 \text{ cm}^3 = 10^{(2+3)} \text{ cm}^3 = 10^5 \text{ cm}^3$

9.10 First, we introduce the indices, $\phi = (z^+ z^-)^1 (4\pi \varepsilon_0 \varepsilon r^2)^{-1}$. There is no need to write a term with an index of 1 so we rewrite slightly as, $\phi = z^+ z^- (4\pi \varepsilon_0 \varepsilon r^2)^{-1}$

Secondly, we split the terms, $\phi = 4^{-1} z^+ z^- \pi^{-1} \varepsilon_0^{-1} \varepsilon^{-1} r^{-2}$

• This slight rearrangement accommodates the convention that it's usual to place numbers at the beginning of an expression.

 (\mathbf{r})

۲