Powers I

Introducing indices and powers

Answers to additional problems

9.1 In the equation $A=\boldsymbol{\ell}^{2}$, the operation is a sQuARE on $\boldsymbol{\ell}$. The reverse operation is a SQUARE Rоот, so $\boldsymbol{\ell}=\sqrt{A}$. Accordingly, $\boldsymbol{\ell}=\sqrt{7.2}=2.68 \mathrm{~cm}$.
9.2 Simple rearranging yields, $I=\frac{V}{R}$

We then insert the numbers, $I=\frac{100 \mathrm{~V}}{10^{12} \Omega}=\frac{10^{2} \mathrm{~V}}{10^{12} \Omega}$.
Using the second laws of powers, eqn. (9.5), we could then say, $I=10^{(2-12)} \mathrm{A}=10^{-10} \mathrm{~A}$.
9.3 We first make the term $D^{2 / 3}$ the equation's subject, remembering that, $\frac{1}{a^{-1 / n}}=a^{1 / n}$

$$
D^{2 / 3}=\frac{I \nu^{1 / 6}}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2}}
$$

A power of $2 / 3$ means the square of the third root. The inverse function takes the inverse power which is the $3 / 2$ power,

$$
\left(D^{2 / 3}\right)^{3 / 2}=\left(\frac{I \nu^{1 / 6}}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2}}\right)^{3 / 2}
$$

The powers in the left-hand side vanish, as intended, to leave D,

$$
\text { Accordingly, } D=\left(\frac{I v^{1 / 6}}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2}}\right)^{3 / 2}
$$

Alternatively, we can divide keeping the negative index, $D^{2 / 3}=\left(\frac{I}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2} v^{-1 / 6}}\right)^{3 / 2}$
$\operatorname{and}\left(D^{2 / 3}\right)^{3 / 2}=\left(\frac{I}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2} v^{-1 / 6}}\right)^{3 / 2}$ leading to, $D=\left(\frac{I}{0.62 n F A c_{\text {analyte }} \omega^{1 / 2} v^{-1 / 6}}\right)^{3 / 2}$
9.4 We start with the equation, $I=0.62 n F A c_{\text {analyte }} D^{2 / 3} \omega^{1 / 2} v^{-1 / 6}$ from Additional Problem 9.3. We recall how a power of $1 / 2$ is the same as a square root, and $1 / 6$ is a sixth root. D raised to a power of $2 / 3$ is the same as the third root of D^{2}. All terms written with no power in fact have a power of 1 , so no root sign is needed.
We can therefore write,

$$
I=\left(\frac{0.62 n F A c_{\text {analyty }} \sqrt[3]{D^{2}} \sqrt{\omega}}{\sqrt[6]{v}}\right)
$$

In words, the compound unit ' $\mathrm{cm}^{3} \mathrm{dm}^{-3}$ ' is 'cubic centimetres per cubic decimetre.'
9.5 Firstly, the powers of 1 are a nonsense. We rewrite as $E=h c \lambda^{-1}$.

Next, λ^{-1} is the same as $1 / \lambda^{+1}=1 / \lambda$.
So $E=h c \times 1 / \lambda=\frac{h c}{\lambda}$
9.6 The unit in the numerator (top line) will be simply mol ${ }^{1}$ or just mol. The IUPAC unit of length is the metre m , so the IUPAC unit of volume is m^{3}. Accordingly, the denominator (bottom line) is $\left(\mathrm{m}^{3}\right)^{-1}=\mathrm{m}^{-3}$. So the IUPAC unit of concentration is $\mathrm{mol} \mathrm{m}^{-3}$.
9.7 Multiplying out the bracket yields, energy $=4 \varepsilon\left(\frac{1}{r}\right)^{12}-4 \varepsilon\left(\frac{1}{r}\right)^{6}$

Rewriting in terms of indices, we obtain, $4 \varepsilon\left(r^{-1}\right)^{12}-4 \varepsilon\left(r^{-1}\right)^{6}=4 \varepsilon r^{-12}-4 \varepsilon r^{-6}$

- The version of the Lennard-Jones equation here has been simplified for this problem.
9.8 First, we introduce the indices, $\omega=(2 \pi c)^{-1}\left(\frac{k}{\mu}\right)^{\frac{1}{2}}$

Second, we split the bracketed term, $\omega=2^{-1} \pi^{-1} c^{-1} k^{1 / 2}\left(1 / \mu^{1 / 2}\right)$
Thirdly, we simplify the final term, writing it in terms of indices, $\omega=2^{-1} \pi^{-1} c^{-1} k^{1 / 2} \mu^{-1 / 2}$
$9.9 \quad V=100 \mathrm{dm}^{3}=100 \mathrm{dm}^{3} \times 1000 \mathrm{~cm}^{3} \mathrm{dm}^{-3}$

Cancelling units yields, $V=100 \mathrm{dm}^{3}=100 \times 1000 \mathrm{~cm}^{3}$
Therefore, $V=10^{2} \times 10^{3} \mathrm{~cm}^{3}=10^{(2+3)} \mathrm{cm}^{3}=10^{5} \mathrm{~cm}^{3}$
9.10 First, we introduce the indices, $\phi=\left(z^{+} z\right)^{1}\left(4 \pi \varepsilon_{0} \varepsilon r^{2}\right)^{-1}$. There is no need to write a term with

Secondly, we split the terms, $\phi=4^{-1} z^{+} z \pi^{-1} \varepsilon_{0}^{-1} \varepsilon^{-1} r^{-2}$

- This slight rearrangement accommodates the convention that it's usual to place numbers at the beginning of an expression.

