Powers II Exponentials and logarithms

Answers to additional problems

10.1 The *x* in the expression log *x* relates to the power to which 10 must be raised to obtain a number.

log(10⁻⁵) is –5 and the pH of this solution is –1 × –5 = +5.

10.2 We first take logs of both sides, log(fraction remaining) = log(¹/₂)ⁿ Secondly, we simplify the term on the right-hand side by remembering from the third law of logarithms how log a^b = b × log a.

۲

Therefore, $\log(\text{fraction remaining}) = n \log(\frac{1}{2})$.

$$k = \frac{1}{t} \times \ln\left(\frac{[(\mathbf{VIII})]_0}{[(\mathbf{VIII})]_t}\right)$$

Secondly, we insert values for terms, $k = \frac{1}{1260s} \times \ln \left(\frac{0.01 \text{ mol } \text{dm}^{-3}}{8.09 \times 10^{-3} \text{ mol } \text{dm}^{-3}} \right)$

so
$$k = \frac{1}{1260 \text{s}} \times \ln(1.236) = \frac{1}{1260 \text{s}} \times 0.212 = 1.68 \times 10^{-4} \text{s}^{-1}.$$

10.4 The inverse function of ln is exponential, so we take the exponential of both sides,

 $\exp(\ln I) = \exp(a + b\eta)$

The exponential of a logarithm of a term is the term itself so, $I = \exp(a + b\eta)$.

- **10.5** Using the second law of logarithms, $\ln k_2 \ln k_1 = -\frac{E_a}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$
- **10.6** The inverse function to $\log x$ is 10^x so we take 10^x of both sides,

so
$$10^{(\log \gamma)} = 10^{(-Az^+z^-\sqrt{I})}$$

The inverse function of a function yields the thing itself. Accordingly, the left-hand side simplifies to,

$$\gamma = 10^{(-Az^+z^-\sqrt{I})}$$

10.7 We first split the two ln terms using the second laws of logarithms,

$$\ln k - \ln T = -\frac{\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R} + \ln k_{\rm B} - \ln h$$

We then take the two ln terms from the right-hand side onto the left,

$$\ln k - \ln T - \ln k_{\rm B} + \ln h = -\frac{\Delta H^{\ddagger}}{RT} + \frac{\Delta S^{\ddagger}}{R}$$

10-Monk-Chap10.indd 1

۲

()

۲

2

10: Powers II

We then combine all the ln terms as a new single term on the left-hand side as,

 (\bullet)

$$\ln\left(\frac{kh}{Tk_{\rm B}}\right) = -\frac{\Delta H^{*}}{RT} + \frac{\Delta S^{*}}{R}$$

8 First $E_{\rm Cu^{2+}, Cu} - E_{\rm Cu^{2+}, Cu}^{\ominus} = \frac{RT}{2F} \times \ln[\rm Cu^{2+}]$

10

so
$$2F(E_{Cu^{2+},Cu} - E_{Cu^{2+},Cu}^{\ominus}) = RT \times \ln[Cu^{2+}]$$

and
$$\frac{2F}{RT}(E_{Cu^{2+},Cu} - E_{Cu^{2+},Cu}^{\oplus}) = \ln[Cu^{2+}]$$

We then take the inverse function of a logarithm (which is an exponential) of both sides,

$$\exp\left\{\frac{2F}{RT}(E_{Cu^{2+},Cu}-E_{Cu^{2+},Cu}^{\ominus})\right\} = \exp\left(\ln[Cu^{2+}]\right)$$

The exponential of a logarithm is the thing itself,

$$[\mathrm{Cu}^{2+}] = \exp\left\{\frac{2F}{RT}(E_{\mathrm{Cu}^{2+},\mathrm{Cu}} - E_{\mathrm{Cu}^{2+},\mathrm{Cu}}^{\textcircled{O}})\right\}$$

We sometimes write this expression slightly differently, as

$$[Cu^{2+}] = \exp\left\{\frac{2F(E_{Cu^{2+},Cu} - E_{Cu^{2+},Cu}^{\odot})}{RT}\right\}$$

First, using the second law of logarithms, we combine the two ln terms, 10.9

$$\ln\left(\frac{p_2}{p_1}\right) = -\frac{\Delta H_{\text{vaporisation}}^{\oplus}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

Secondly, we reverse the logarithm, by taking the exponential of both sides,

$$\left[\frac{p_2}{p_1}\right] = \exp\left[-\frac{\Delta H_{\text{vaporisation}}^{\Theta}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

The brackets on the left-hand side are now superfluous.

$$\frac{p_2}{p_1} = \exp\left[-\frac{\Delta H_{\text{vaporisation}}^{\ominus}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

We then multiply both sides of the equation by p_1 ,

$$p_2 = p_1 \exp\left[-\frac{\Delta H_{\text{vaporisation}}^{\Theta}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]$$

10.10 First, we take the logarithm of *both* sides,

 $\ln m = \ln \left(k \, c^{1/n} \right)$

Secondly, using the first law of logarithms, we split the right-hand side,

 $\ln m = \ln k + \ln c^{1/n}$

Thirdly, using the third law of logarithms, we simplify the final term,

Equation of a straight line y = c + mx

Linearized equation $\ln m = \ln k + \frac{1}{n} \ln c$

۲

We have linearized an equation. Chapter 29 discusses that process in greater depth

 (\mathbf{r})

It is common for some students to try to rearrange the equation as,

 $\ln[Cu^{2+}] = \frac{E_{Cu^{2+},Cu}}{E_{Cu^{2+},Cu}^{\ominus} + \frac{RT}{2F}}$

This rearrangement is not correct. BODMAS will not allow it. The subtraction step must happen first.

()