Powers II

Exponentials and logarithms

Answers to additional problems

10.1 The x in the expression $\log x$ relates to the power to which 10 must be raised to obtain a number.
$\log \left(10^{-5}\right)$ is -5 and the pH of this solution is $-1 \times-5=+5$.
10.2 We first take logs of both sides, $\quad \log ($ fraction remaining $)=\log (1 / 2)^{n}$

Secondly, we simplify the term on the right-hand side by remembering from the third law of logarithms how $\log a^{b}=b \times \log a$.
Therefore, $\quad \log ($ fraction remaining $)=n \log (1 / 2)$.
10.3 We first rearrange the expression slightly, making k the subject,

$$
k=\frac{1}{t} \times \ln \left(\frac{[(\mathrm{VIII})]_{0}}{[(\mathrm{VIII})]_{t}}\right)
$$

Secondly, we insert values for terms, $k=\frac{1}{1260 \mathrm{~s}} \times \ln \left(\frac{0.01 \mathrm{~mol} \mathrm{dm}^{-3}}{8.09 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}}\right)$
so $k=\frac{1}{1260 \mathrm{~s}} \times \ln (1.236)=\frac{1}{1260 \mathrm{~s}} \times 0.212=1.68 \times 10^{-4} \mathrm{~s}^{-1}$.
10.4 The inverse function of \ln is exponential, so we take the exponential of both sides,

$$
\exp (\ln I)=\exp (a+b \eta)
$$

The exponential of a logarithm of a term is the term itself so, $I=\exp (a+b \eta)$.
10.5 Using the second law of logarithms,

$$
\ln k_{2}-\ln k_{1}=-\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

10.6 The inverse function to $\log x$ is 10^{x} so we take 10^{x} of both sides,
so $10^{(\log \gamma)}=10^{\left(-A z^{+} z^{-} \sqrt{I}\right)}$
The inverse function of a function yields the thing itself. Accordingly, the left-hand side simplifies to,

$$
\gamma=10^{\left(-A z^{+} z^{-} \sqrt{I}\right)}
$$

10.7 We first split the two \ln terms using the second laws of logarithms,

$$
\ln k-\ln T=-\frac{\Delta H^{\ddagger}}{R T}+\frac{\Delta S^{\ddagger}}{R}+\ln k_{\mathrm{B}}-\ln h
$$

We then take the two \ln terms from the right-hand side onto the left,

$$
\ln k-\ln T-\ln k_{\mathrm{B}}+\ln h=-\frac{\Delta H^{\ddagger}}{R T}+\frac{\Delta S^{\ddagger}}{R}
$$

It is common for some students to try to rearrange the equation as,
$\ln \left[\mathrm{Cu}^{2+}\right]=\frac{E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}}{E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}^{\ominus}+\frac{R T}{2 F}}$
This rearrangement is not correct. BODMAS will not allow it. The subtraction step must happen first.

We then combine all the \ln terms as a new single term on the left-hand side as,

$$
\ln \left(\frac{k h}{T k_{\mathrm{B}}}\right)=-\frac{\Delta H^{\ddagger}}{R T}+\frac{\Delta S^{\ddagger}}{R}
$$

10.8 First $\quad E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}-E_{\mathrm{Cu}^{2}, \mathrm{Cu}}^{\ominus}=\frac{R T}{2 F} \times \ln \left[\mathrm{Cu}^{2+}\right]$
so $\quad 2 F\left(E_{\mathrm{Cu}^{2+}, \mathrm{Cu}^{2}}-E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}^{\ominus}\right)=R T \times \ln \left[\mathrm{Cu}^{2+}\right]$
and $\quad \frac{2 F}{R T}\left(E_{\mathrm{Cu}^{2+}, \mathrm{Cu}^{2}}-E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}^{\ominus}\right)=\ln \left[\mathrm{Cu}^{2+}\right]$
We then take the inverse function of a logarithm (which is an exponential) of both sides,

$$
\exp \left\{\frac{2 F}{R T}\left(E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}-E_{\mathrm{Cu}^{2}, \mathrm{Cu}}^{\ominus}\right)\right\}=\exp \left(\ln \left[\mathrm{Cu}^{2+}\right]\right)
$$

The exponential of a logarithm is the thing itself,

$$
\left[\mathrm{Cu}^{2+}\right]=\exp \left\{\frac{2 F}{R T}\left(E_{\mathrm{Cu}^{2+}, \mathrm{Cu}^{2}}-E_{\mathrm{Cu}^{2+}, \mathrm{Cu}}^{\ominus}\right)\right\}
$$

We sometimes write this expression slightly differently, as

$$
\left[\mathrm{Cu}^{2+}\right]=\exp \left\{\frac{2 F\left(E_{\mathrm{Cu}^{2+}, \mathrm{Cu}^{2}}-E_{\mathrm{Cu}^{2+}, \mathrm{Cu}^{\prime}}\right)}{R T}\right\}
$$

10.9 First, using the second law of logarithms, we combine the two ln terms,

$$
\ln \left(\frac{p_{2}}{p_{1}}\right)=-\frac{\Delta H_{\text {vaporisation }}^{\ominus}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

Secondly, we reverse the logarithm, by taking the exponential of both sides,

$$
\left(\frac{p_{2}}{p_{1}}\right)=\exp \left[-\frac{\Delta H_{\text {vaporisation }}^{\ominus}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right]
$$

The brackets on the left-hand side are now superfluous.

$$
\frac{p_{2}}{p_{1}}=\exp \left[-\frac{\Delta H_{\text {vaporisation }}^{\ominus}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right]
$$

We then multiply both sides of the equation by p_{1},

$$
p_{2}=p_{1} \exp \left[-\frac{\Delta H_{\text {vaporisation }}^{\ominus}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right]
$$

10.10 First, we take the logarithm of both sides,

$$
\ln m=\ln \left(k c^{1 / n}\right)
$$

Secondly, using the first law of logarithms, we split the right-hand side,

$$
\ln m=\ln k+\ln c^{1 / n}
$$

Thirdly, using the third law of logarithms, we simplify the final term,
Equation of a straight line $y=c+m x$
Linearized equation $\ln m=\ln k+\frac{1}{n} \ln c$
We have linearized an equation. Chapter 29 discusses that process in greater depth

