Advanced BODMAS
 Rearranging equations with more complicated functions

Answers to additional problems

12.1 The I term appears within the denominator of the fraction inside the bracket, which is inconvenient. Using the laws of logarithms, we can rewrite the equation slightly.

$$
\begin{aligned}
& -\ln \left(\frac{I_{0}}{I}\right)=-c \ell \varepsilon \quad \text { we multiply each side by }-1 \\
& \ln \left(\frac{I}{I_{0}}\right)=-c \ell \varepsilon
\end{aligned}
$$

This follows because
$\left(\frac{I_{0}}{I}\right)=\left(\frac{I}{I_{o}}\right)^{-1}$ and
$\log a^{n}=n \log a$.

We now take the inverse function of the logarithm,

$$
\left(\frac{I}{I_{0}}\right)=\exp (-c \ell \varepsilon)
$$

Finally, we multiply both sides by I_{0}

$$
I=I_{0} \exp (-c \boldsymbol{\ell} \varepsilon)
$$

12.2 We first divide both sides by A in order to get the exponential on its own

$$
\frac{k}{A}=\exp \left(-\frac{E_{a}}{R T}\right)
$$

Then take the inverse function of the exponential, which is a natural logarithm \ln

$$
\ln \left(\frac{k}{A}\right)=-\frac{E_{a}}{R T}
$$

We multiply both sides by $-R T$

$$
-R T \ln \left(\frac{k}{A}\right)=E_{a}
$$

Finally, we can remove the minus sign before the logarithm by inverting the logarithm $\left(\ln (a / b)=\ln (b / a)^{-1}=-\ln (b / a)\right)$

$$
E_{a}=R T \ln \left(\frac{A}{k}\right)
$$

12.3 1. We multiply both sides by 3 ,

$$
3 V=4 \pi r^{3}
$$

2. We divide both sides by $4 \pi, \quad \frac{3 V}{4 \pi}=r^{3}$
3. We take the cube root of both sides, $\quad r=\sqrt[3]{\frac{3 V}{4 \pi}}$
4. Only now do we insert terms $\quad r=\sqrt[3]{\frac{3 \times 5.56 \times 10^{-31} \mathrm{~m}^{3}}{4 \pi}}$ so $r=5.1 \times 10^{-11} \mathrm{~m}$.

Don't forget to use brackets when dividing by 4π.
12.4 We first simplify the left-hand side so it comprises only one term, which includes $\Delta G_{T_{2}}^{\ominus}$

$$
\frac{\Delta G_{T_{2}}^{\ominus}}{T_{2}}=\frac{\Delta G_{T_{1}}^{\ominus}}{T_{1}}+\Delta H^{\ominus}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

We then multiply both sides by T_{2}

$$
\Delta G_{T_{2}}^{\ominus}=\frac{T_{2} \Delta G_{T_{1}}^{\ominus}}{T_{1}}+T_{2} \Delta H^{\ominus}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

The second term on the right-hand side could also be rewritten, so the equation becomes

$$
\Delta G_{T_{2}}^{\ominus}=T_{2}\left(\frac{\Delta G_{T_{1}}^{\ominus}}{T_{1}}+\Delta H^{\ominus}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\right) \text { or } \Delta G_{T_{2}}^{\ominus}=\frac{T_{2} \Delta G_{T_{1}}^{\ominus}}{T_{1}}+\Delta H^{\ominus}\left(1-\frac{T_{2}}{T_{1}}\right)
$$

12.5 Looking at the right-hand side of the equation shows how the concentration [I] was first SQUARE ROOTED to form $\sqrt{[\mathrm{I}]}$ which we then multiplied by k [aromatic].

The first step when obtaining [(I)] is therefore to divide both sides of the equation by k [aromatic]. We will treat k [aromatic] as a compound variable. We therefore perform the inverse operation, and divide both sides in a single step,

$$
\frac{\text { rate }}{k \text { [aromatic] }}=\sqrt{[\mathrm{I}]}
$$

Since the right-hand side is a SQUARE ROot to obtain [I] from $\sqrt{[\mathrm{I}]}$ we perform the inverse operation and square both sides,

$$
\left(\frac{\text { rate }}{k[\text { aromatic }]}\right)^{2}=(\sqrt{[\mathrm{I}]})^{2}
$$

The square of a square root produces the thing itself. In this case, it produces [I],

$$
[\mathrm{I}]=\left(\frac{\text { rate }}{k[\text { aromatic }]}\right)^{2}
$$

12.6 We first make the logarithm the subject, so we subtract k and divide by $-a$,

$$
\log _{10}\left[\mathrm{~F}^{-}\right]=\frac{e m f-k}{-a}
$$

We multiply both top and bottom of the right-hand side by -1 and then take the inverse function of $\log _{10}$, which is 10^{x}

$$
\left[\mathrm{F}^{-}\right]=10^{\left(\frac{k-e m f}{a}\right)}
$$

12.7 To make c the subject of the equation, we first subtract Λ° from both sides,

$$
\Lambda-\Lambda^{\circ}=-b \sqrt{c}
$$

Note how the minus sign persists on the right-hand side. Next, we note how \sqrt{c} has been multiplied by a factor of $-b$, so we divide both sides by $-b$,

$$
\frac{\Lambda-\Lambda^{\circ}}{-b}=\sqrt{c}
$$

Finally we perform the inverse operation to sQuare root, and square both sides,

$$
c=\left(\frac{\Lambda-\Lambda^{\circ}}{-b}\right)^{2}
$$

We could rewrite this result, multiplying top and bottom within the bracket by ' -1 ',

$$
c=\left(\frac{\Lambda^{\circ}-\Lambda}{b}\right)^{2}
$$

- It might have been easier to rewrite the source equation as $\Lambda=\Lambda^{\circ}+(-b \sqrt{c})$ to make it clear which term we should isolate first.
12.8 We first need to simplify the right-hand side of the equation by separating the bracket from the remainder of the equation, getting it on its own. So we cross-multiply

$$
-\frac{R}{\Delta H^{\ominus}} \ln \left(\frac{K_{2}}{K_{1}}\right)=\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

The bracket on the right-hand side is now redundant

$$
-\frac{R}{\Delta H^{\ominus}} \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{1}{T_{2}}-\frac{1}{T_{1}}
$$

We then move the $1 / T_{1}$ term

$$
\frac{1}{T_{2}}=\frac{1}{T_{1}}-\frac{R}{\Delta H^{\ominus}} \ln \left(\frac{K_{2}}{K_{1}}\right)
$$

Finally, we take the reciprocal of both sides,

$$
T_{2}=1 /\left(\frac{1}{T_{1}}-\frac{R}{\Delta H^{\ominus}} \ln \left(\frac{K_{2}}{K_{1}}\right)\right) \text { so } T_{2}=\left(\frac{1}{T_{1}}-\frac{R}{\Delta H^{\ominus}} \ln \left(\frac{K_{2}}{K_{1}}\right)\right)^{-1}
$$

12.9 1. The sixth Rоot has been taken, to form $\sqrt[6]{v}$.
2. $\sqrt[6]{v}$ has been divided into a large collection of constants $0.62 n F A c D^{2 / 3} \omega^{1 / 2}$. This collection certainly looks formidable, but we do not really need to think about them. If it makes the equation look less scary, rewrite it as $k \div \sqrt[6]{v}$, where k represents all these constants bundled together.
To rearrange the equation, we reverse these two operations,

1. To obtain $\sqrt[6]{v}$ on its own, we multiply both sides of the equation by $\sqrt[6]{v}$ and divide both sides by I. We obtain,

$$
\sqrt[6]{v}=\frac{0.62 n F A c D^{2 / 3} \omega^{1 / 2}}{I}
$$

2. To reverse the sixth root, we must take the sixth power. We obtain,

$$
(\sqrt[6]{v})^{6}=\left(\frac{0.62 n F A c D^{2 / 3} \omega^{1 / 2}}{I}\right)^{6}
$$

The left-hand side then collapses to form

$$
v=\left(\frac{0.62 n F A c D^{2 / 3} \omega^{1 / 2}}{I}\right)^{6}
$$

12.10 We first remove the pre-exponential factor by cross-multiplying, and combining the exponentials arguments using the first power law, eqn. (9.4)

$$
\frac{k h}{T k_{B}}=\exp \left(\frac{\Delta S^{\ddagger}}{R}+\left(-\frac{\Delta H^{\ddagger}}{R T}\right)\right)
$$

We then take the inverse function of the exponential which is \ln. Doing so deals with both terms on the right-hand side

$$
\ln \left(\frac{k h}{T k_{B}}\right)=\frac{\Delta S^{\ddagger}}{R}-\frac{\Delta H^{\ddagger}}{R T}
$$

Before we go further, for historical reasons, it's usual to split the 'ln' term in a particular way, which we will show in 2 steps

$$
\begin{aligned}
& \ln \left[\left(\frac{k}{T}\right) \times\left(\frac{k_{B}}{h}\right)^{-1}\right]=\frac{\Delta S^{\ddagger}}{R}-\frac{\Delta H^{*}}{R T} \\
& \ln \left(\frac{k}{T}\right)-\ln \left(\frac{k_{B}}{h}\right)=\frac{\Delta S^{\ddagger}}{R}-\frac{\Delta H^{*}}{R T}
\end{aligned}
$$

We next add the enthalpy term to both sides

$$
\frac{\Delta S^{\ddagger}}{R}=\ln \frac{k}{T}-\ln \frac{k_{B}}{h}+\frac{\Delta H^{*}}{R T}
$$

Finally, we multiply both sides by the gas constant

$$
\Delta S^{\ddagger}=R \ln \frac{k}{T}-R \ln \frac{k_{B}}{h}+\frac{\Delta H^{\ddagger}}{T}
$$

