Differentiation I
 Rates of change, tangents, and differentiation

Answers to additional problems

13.1 The equation can be re-written as, $v=\ell t^{-1}$.
so $\frac{\mathrm{d} \nu}{\mathrm{d} t}=-1 \times \boldsymbol{\ell} \times t^{2}=-\frac{\boldsymbol{\ell}}{\tau^{2}}$
13.2 We start by rewriting the expression slightly, as $\tau=\left(2^{1 / 2} / \pi\right)(\Delta \nu)^{-1}$ where the first term in brackets is a constant.
Differentiating with eqn. (12.3) gives, $\quad \frac{\mathrm{d} \tau}{\mathrm{d}(v \Delta)}=-1 \times\left(2^{1 / 2} / \pi\right)(\Delta \nu)^{-2}$
We will probably want to rewrite this result as, $\tau=\frac{2^{\frac{1}{2}}}{\pi(\Delta v)^{2}}$
13.3 Using eqn. (13.2), we say, $\frac{\mathrm{d} I}{\mathrm{~d} v}=\frac{1}{2} \times k \times v^{-\frac{1}{2}}=\frac{k}{2 \sqrt{v}}$
$13.4 \frac{d \mu}{d T}=\frac{3}{2} \times k T^{\frac{1}{2}}$
Tidying yields, $\frac{\mathrm{d} \mu}{\mathrm{d} T}=\frac{3 k}{2} T^{\frac{1}{2}}$ or $\frac{3 k T^{\frac{1}{2}}}{2}$ or even $\frac{3 k \sqrt{T}}{2}$
$13.5 \frac{\mathrm{~d} M}{\mathrm{~d} c}=\frac{1}{n} \times k c^{\left(\frac{1}{n}-1\right)}$
$\mathrm{d} c \quad n$
It might be worth tidying this expression slightly as $\frac{\mathrm{d} M}{\mathrm{~d} c}=\frac{k}{n} c^{\left(\frac{1}{n}-1\right)}$ or $\frac{k c^{\left(\frac{1}{n}-1\right)}}{n}$
13.6 The equation can be rewritten as $V=\left(\frac{\mu_{1} \mu_{2}}{4 \pi \varepsilon_{0}}\right) \times \frac{1}{r^{3}}$ or $V=\left(\frac{\mu_{1} \mu_{2}}{4 \pi \varepsilon_{0}}\right) \times r^{-3}$ where the bracket in
each remains constant.

Therefore, $\frac{\mathrm{d} V}{\mathrm{~d} r}=-3\left(\frac{\mu_{1} \mu_{2}}{4 \pi \varepsilon_{0}}\right) \times r^{-4}=-\frac{3 \mu_{1} \mu_{2}}{4 \pi \varepsilon_{0} r^{4}}$
13.7 We first rewrite this equation slightly, as,

$$
V_{\text {eff }}=\left(-\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right) \times r^{-1}+\left(\frac{l(l+1) \hbar^{2}}{2 \mu}\right) r^{-2}
$$

where both the bracketed terms are wholly constant.

$$
\frac{\mathrm{d} V_{\text {eff }}}{\mathrm{d} r}=-1 \times\left(-\frac{Z e^{2}}{4 \pi \varepsilon_{0}}\right) \times r^{-2}+-2 \times\left(\frac{l(l+1) \hbar^{2}}{2 \mu}\right) r^{-3}
$$

Tidying up yields, $\quad \frac{\mathrm{d} V_{\text {eff }}}{\mathrm{d} r}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} r^{2}}-\frac{2 l(l+1) \hbar^{2}}{2 \mu r^{3}}$
The two factors of 2 in the right-hand term cancel, leaving,

$$
\frac{\mathrm{d} V_{e f f}}{\mathrm{~d} r}=\frac{Z e^{2}}{4 \pi \varepsilon_{0} r^{2}}-\frac{l(l+1) \hbar^{2}}{\mu r^{3}}
$$

13.8 We can rewrite the equation slightly, as $I=\left(I_{0} \frac{\pi \alpha^{2}}{\varepsilon_{\mathrm{r}}^{2} r^{2}} \sin ^{2} \phi\right) \lambda^{-4}$ where the bracketed term is
constant.

$$
\frac{\mathrm{d} I}{\mathrm{~d} \lambda}=-4 \times\left(I_{\mathrm{o}} \frac{\pi \alpha^{2}}{\varepsilon_{\mathrm{r}}^{2} r^{2}} \sin ^{2} \phi\right) \lambda^{-5}
$$

Tidying the derivative slightly yields, $\frac{\mathrm{d} I}{\mathrm{~d} \lambda}=-I_{\mathrm{o}} \frac{4 \pi \alpha^{2}}{\varepsilon_{\mathrm{r}}^{2} r^{2} \lambda^{5}} \sin ^{2} \phi$
13.9 The equation can be rewritten as, $p=\frac{R T}{V_{\mathrm{m}}}+\frac{R T B}{V_{\mathrm{m}}^{2}}+\frac{R T C}{V_{\mathrm{m}}^{3}}$, and thence

$$
p=(R T) \mathrm{V}_{\mathrm{m}}^{-1}+(R T B) V_{\mathrm{m}}^{-2}+(R T C) V_{\mathrm{m}}^{-3}
$$

Each term contains a term of the form V_{m}^{-n}, therefore

$$
\frac{\mathrm{d} p}{\mathrm{~d} V_{\mathrm{m}}}=(-1) \times(R T) V_{\mathrm{m}}^{-2}+(-2) \times(R T B) V_{\mathrm{m}}^{-3}+(-3) \times(R T C) V_{\mathrm{m}}^{-4}
$$

Tidying yields, $\quad \frac{\mathrm{d} p}{\mathrm{~d} V_{\mathrm{m}}}=-1 \times\left(\frac{R T}{V_{\mathrm{m}}^{2}}\right)-2 \times\left(\frac{R T B}{V_{\mathrm{m}}^{3}}\right)-3 \times\left(\frac{R T C}{V_{\mathrm{m}}^{4}}\right)$
Factorizing simplifies further, $\quad \frac{\mathrm{d} p}{\mathrm{~d} V_{\mathrm{m}}}=-R T \times\left[\left(\frac{1}{V_{\mathrm{m}}^{2}}\right)+\left(\frac{2 B}{V_{\mathrm{m}}^{3}}\right)+\left(\frac{3 C}{V_{\mathrm{m}}^{4}}\right)\right]$
13.10 The equation can be rewritten as, $b=\frac{q z^{3} \varepsilon F}{24 \pi \varepsilon_{0} R}\left(\frac{2}{\varepsilon R}\right)^{1 / 2} T^{-3 / 2}$

Therefore, $\frac{\mathrm{d} b}{\mathrm{~d} T}=-\frac{3}{2} \times \frac{q z^{3} \varepsilon F}{24 \pi \varepsilon_{0} R}\left(\frac{2}{\varepsilon R}\right)^{1 / 2} T^{-5 / 2}$
We might choose to rewrite as $\frac{\mathrm{d} b}{\mathrm{~d} T}=-\frac{q z^{3} F}{16 \pi \varepsilon_{0}}\left(\frac{2 \varepsilon}{R^{3} T^{5}}\right)^{1 / 2}$

