Differentiation III
 Differentiating functions of functions: the chain rule

Answers to additional problems

15.1 To enable an opportunity to use the chain rule, we will ignore the general rule for differentiation of a sine, and say that $\omega t=u$ and $V=\sin u$.

For this example, the chain rule takes the form, $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} t}$

$$
\begin{array}{ll}
\text { If } V=\sin u & \text { then } \frac{\mathrm{d} V}{\mathrm{~d} u}=\cos u \\
\text { If } u=\omega t & \text { then } \frac{\mathrm{d} u}{\mathrm{~d} t}=\omega
\end{array}
$$

Inserting terms into the chain-rule expression yields,

$$
\mathrm{d} V / \mathrm{d} t=\cos u \times \omega
$$

and substituting for u yields,

$$
\mathrm{d} V / \mathrm{d} t=\omega \cos \omega t
$$

15.2 The jumble of constants before the sin term is a constant, so we will call it ' A '. We rewrite the expression, saying $I=A(\sin \theta)^{2}$. Therefore, $I=A u^{2}$ and $u=\sin \theta$

For this example, the chain rule takes the form, $\frac{\mathrm{d} I}{\mathrm{~d} \theta}=\frac{\mathrm{d} I}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} \theta}$

$$
\begin{aligned}
& \text { If } I=A u^{2} \quad \text { then } \quad \frac{\mathrm{d} I}{\mathrm{~d} u}=2 A u \\
& \text { If } u=\sin \theta \text { then } \frac{\mathrm{d} u}{\mathrm{~d} \theta}=\cos \theta
\end{aligned}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} I}{\mathrm{~d} \theta}=2 A u \times \cos \theta
$$

and substituting for u yields,

$$
\frac{\mathrm{d} I}{\mathrm{~d} \theta}=2 A \sin \theta \times \cos \theta
$$

Finally, we substitute for A,

$$
\frac{\mathrm{d} I}{\mathrm{~d} \theta}=I_{\mathrm{o}} \frac{2 \pi \alpha^{2}}{\varepsilon_{\mathrm{r}}^{2} \lambda^{4} r^{2}} \sin \theta \cos \theta
$$

15.3 The term within the root can be u, so the expression becomes, $\mathcal{E}=u^{1 / 2}$ where $u=\frac{1}{2} \mathscr{E}_{0}^{2}+\frac{1}{2} \mathcal{E}_{0}^{2} \cos (2 \omega t)$. (Notice how the bracket has been multiplied out.)

For this example, the chain rule takes the form, $\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} t}=\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} t}$

$$
\begin{array}{ll}
\text { If } \mathcal{E}=u^{1 / 2} & \text { then } \frac{\mathrm{d} \mathcal{E}}{\mathrm{~d} t}=\frac{1}{2} u^{-1 / 2}=\frac{1}{2 u^{1 / 2}} \\
\text { If } u=\frac{1}{2} \mathcal{E}_{0}^{2}+\frac{1}{2} \mathcal{E}_{0}^{2} \cos (2 \omega t) & \text { then } \frac{\mathrm{d} u}{\mathrm{~d} t}=-2 \omega \times \frac{1}{2} \mathcal{E}_{0}^{2}+\frac{1}{2} \mathcal{E}_{0}^{2} \sin (2 \omega t)=-\omega \mathcal{E}_{0}^{2} \sin (2 \omega t)
\end{array}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} \mathcal{E}}{\mathrm{~d} t}=\frac{1}{2 u^{1 / 2}} \times-\omega \mathcal{E}_{0}^{2} \sin (2 \omega t)
$$

Re-inserting for u yields,

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{1}{2\left[\frac{1}{2} \mathcal{E}_{0}^{2}+\frac{1}{2} \mathcal{E}_{0}^{2} \cos (2 \omega t)\right]} \times-\omega \mathcal{E}_{0}^{2} \sin (2 \omega t)
$$

Tidying creates a neater expression,

$$
\frac{\mathrm{d} \mathcal{E}}{\mathrm{~d} t}=\frac{\omega \mathcal{E}_{0}^{2} \sin (2 \omega t)}{2\left[\frac{1}{2} \mathcal{E}_{0}^{2}(1+\cos (2 \omega t))\right]^{1 / 2}}
$$

- This worked example assumes the differentiation was performed with θ expressed in radians.
15.4 We first rewrite the expression slightly, saying, $d=3(\cos \theta)^{2}-1$. We now say $\cos \theta=u$, so
$d=3 u^{2}-1$.
For this example, the chain rule takes the form, $\frac{\mathrm{d} d}{\mathrm{~d} \theta}=\frac{\mathrm{d} d}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} \theta}$

$$
\begin{aligned}
& \text { If } d=3 u^{2}-1 \quad \text { then } \quad \frac{\mathrm{d} d}{\mathrm{~d} u}=6 u \\
& \text { If } u=\cos \theta \quad \text { then } \frac{\mathrm{d} u}{\mathrm{~d} \theta}=-\sin \theta
\end{aligned}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} d}{\mathrm{~d} u}=6 u \times-\sin \theta
$$

and re-inserting for u yields,

$$
\frac{\mathrm{d} d}{\mathrm{~d} u}=-6(\cos \theta) \times \sin \theta
$$

A little tidying up will make the expression look neater,

$$
\frac{\mathrm{d} d}{\mathrm{~d} u}=-6 \cos \theta \sin \theta
$$

- We cannot say $d d=d^{2}$ here because the upright d is an operator and the italic d is a variable.
- This worked example assumes the differentiation was performed with θ expressed in radians.
15.5 We firstly rearrange the equation to make d the subject, $d=\frac{n \lambda}{2 \sin \theta}$.

We then rewrite the expression slightly, saying, $\sin \theta=u$, so $d=1 / 2 n \lambda u^{-1}$.
For this example, the chain rule takes the form, $\quad \frac{\mathrm{d} d}{\mathrm{~d} \theta}=\frac{\mathrm{d} d}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} \theta}$

$$
\begin{aligned}
& \text { If } d=1 / 2 n \lambda u^{-1} \quad \text { then } \quad \frac{\mathrm{d} d}{\mathrm{~d} u}=-1 / 2 n \lambda u^{-2}=-\frac{n \lambda}{2 u^{2}} \\
& \text { If } u=\sin \theta \quad \text { then } \quad \frac{\mathrm{d} u}{\mathrm{~d} \theta}=\cos \theta
\end{aligned}
$$

Inserting terms into the chain-rule expression yields,

$$
\mathrm{d} d / \mathrm{d} \theta=-\frac{n \lambda}{2 u^{2}} \times \cos \theta=-\frac{n \lambda \cos \theta}{2 u^{2}}
$$

and substituting for u yields,

$$
\mathrm{d} d / \mathrm{d} \theta=-\frac{n \lambda \cos \theta}{2(\sin \theta)^{2}}=-\frac{n \lambda \cos \theta}{2 \sin ^{2} \theta}
$$

- We cannot say $\mathrm{d} d=\mathrm{d}^{2}$ here, because the upright d is an operator and the italic d is a variable.
- This worked example assumes the differentiation was performed with θ expressed in radians.
15.6 We want to find the derivative $\mathrm{d} P / \mathrm{d} n$. We start by simplifying the expression slightly. We say $P=k \exp \left(-A n^{2}\right)$, where k is the first bracket above and $A=1 /(2 N)$.

We next identify the functions. $u=-A n^{2}$ and $P=k \exp u$.
For this example, the chain rule takes the form, $\frac{\mathrm{d} P}{\mathrm{~d} n}=\frac{\mathrm{d} P}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} n}$

$$
\begin{array}{ll}
\text { If } P=k \exp u & \text { then } \\
\frac{\mathrm{d} P}{\mathrm{~d} u}=k \exp u \\
\text { If } u=-A n^{2} & \text { then } \frac{\mathrm{d} u}{\mathrm{~d} n}=-2 A n
\end{array}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} P}{\mathrm{~d} n}-2 k A n \exp \left(-A n^{2}\right)
$$

Finally, we back-substitute for A and k,

$$
\frac{\mathrm{d} P}{\mathrm{~d} n}=-2 \frac{n}{2 N}\left(\frac{2}{\pi N}\right)^{1 / 2} \exp \left(-\frac{n^{2}}{2 N}\right)
$$

Tidying and cancelling yields our final result,

$$
\frac{\mathrm{d} P}{\mathrm{~d} n}=-n\left(\frac{2}{\pi N^{3}}\right)^{1 / 2} \exp \left(-\frac{n^{2}}{2 N}\right)
$$

15.7 We start by saying, $\psi=A \exp (u)$, where $u=-\alpha r^{2}$ and $A=\left(\frac{2 \alpha}{\pi}\right)^{3 / 4}$.

For this example, the chain rule takes the form, $\frac{\mathrm{d} \psi}{\mathrm{d} r}=\frac{\mathrm{d} \psi}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} r}$

$$
\begin{array}{ll}
\text { If } \psi=A \exp (u) & \text { then } \frac{\mathrm{d} \psi}{\mathrm{~d} u}=A \exp (u) \\
\text { If } u=-\alpha r^{2} & \text { then } \frac{\mathrm{d} u}{\mathrm{~d} r}=-2 \alpha r
\end{array}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} r}=A \exp (u) \times(-2 \alpha r)
$$

Tidying the expression yields,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} r}=-2 \alpha r A \exp (u)
$$

And substituting for u yields,

This worked example assumes the differentiation was performed with θ expressed in radians.

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} r}=-2 \alpha r A \exp \left(-\alpha r^{2}\right)
$$

Finally, we substitute for A,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} r}=-2 \alpha r\left(\frac{2 \alpha}{\pi}\right)^{3 / 4} \exp \left(-\alpha r^{2}\right)
$$

15.8 We start by saying, $\psi=K \cos u$ where $u=\frac{x \sqrt{2 m E}}{h}$.

In this example, the chain rule takes the form, $\frac{\mathrm{d} \psi}{\mathrm{d} E}=\frac{\mathrm{d} \psi}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} E}$

$$
\begin{aligned}
& \text { If } \psi=K \cos u \text { then } \frac{\mathrm{d} \psi}{\mathrm{~d} u}=-K \sin u \\
& \text { if } u=\frac{x \sqrt{2 m E}}{h}=\left(\frac{x \sqrt{2 m}}{h}\right) E^{1 / 2} \text { then } \frac{d u}{d E}=\frac{1}{2} \times\left(\frac{x \sqrt{2 m}}{h}\right) E^{-1 / 2}=\frac{x}{h}\left[\frac{m}{2 E}\right]
\end{aligned}
$$

Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} E}=-K \sin (u) \times \frac{x}{h} \sqrt{\frac{m}{2 E}}
$$

Tidying the expression slightly yields,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} E}=-\frac{K x}{h} \sqrt{\frac{m}{2 E}} \sin (u)
$$

Finally, substituting for u yields,

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} E}=-\frac{K x}{h} \sqrt{\frac{m}{2 E}} \sin \left(\frac{x \sqrt{2 m E}}{h}\right)
$$

15.9 Let the term within the square bracket be u, so $U=D_{e} u^{2}$

For this example, the chain rule takes the form, $\frac{\mathrm{d} U}{\mathrm{~d} r}=\frac{\mathrm{d} U}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} r}$

$$
\begin{array}{ll}
\text { If } \quad U=D_{\mathrm{e}} u^{2} & \text { then } \frac{\mathrm{d} U}{\mathrm{~d} u}=2 D_{\mathrm{e}} u \\
\text { If } u=1-\exp (-\beta r) & \text { then } \frac{\mathrm{d} u}{\mathrm{~d} r}=\beta \exp (-\beta r)
\end{array}
$$

(There is no minus sign in front of the first β because the two minus signs have cancelled.) Inserting terms into the chain-rule expression yields,

$$
\frac{\mathrm{d} U}{\mathrm{~d} r}=2 D_{\mathrm{e}} u \times \beta \exp (-\beta r)
$$

And substituting for u gives,

$$
\frac{\mathrm{d} U}{\mathrm{~d} r}=2 D_{\mathrm{e}}(1-\exp (-\beta r)) \times \beta \exp (-\beta r)
$$

Further tidying makes the expression look a little neater,

$$
\frac{\mathrm{d} U}{\mathrm{~d} r}=2 \beta D_{\mathrm{e}} \exp (-\beta r)[1-\exp (-\beta r)]
$$

15.10 Let the term within the root be u, and let the $\left\{\left(4 a^{2} /\left(n^{2}\left(h^{2}+k^{2}+l^{2}\right)\right)\right\}\right.$ term within the root be A. In which case, $\lambda=\sqrt{u}$ where $u=A \sin ^{2} \theta$.

For this example, the chain rule takes the form, $\frac{\mathrm{d} \lambda}{\mathrm{d} \theta}=\frac{\mathrm{d} \lambda}{\mathrm{d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} \theta}$

$$
\begin{aligned}
& \text { If } \lambda=\sqrt{u} \quad \text { then } \frac{\mathrm{d} \lambda}{\mathrm{~d} u}=1 / 2 u^{-1 / 2} \text { so } \frac{1}{2 \sqrt{u}} \\
& \text { If } u=A \sin ^{2} \theta \text { then } \frac{\mathrm{d} u}{\mathrm{~d} \theta}=2 A \sin \theta \cos \theta
\end{aligned}
$$

The derivative of $\sin ^{2} \theta$ requires an additional chain-rule cycle. We find the necessary working within Additional Problem 15.2.

Inserting terms into the chain-rule expression,

$$
\frac{\mathrm{d} \lambda}{\mathrm{~d} \theta}=\frac{1}{2 \sqrt{u}} \times 2 A \sin \theta \cos \theta=\frac{A \sin \theta \cos \theta}{\sqrt{u}}
$$

And substituting for u yields, $\frac{A \cos \theta \sin \theta}{\sqrt{A \sin ^{2} \theta}}=\frac{A \cos \theta \sin \theta}{\sin \theta \times \sqrt{A}}=\frac{A \cos \theta}{\sqrt{A}}=\sqrt{A} \cos \theta$
Back-substituting for A yields, $\sqrt{\frac{4 a^{2}}{n^{2}\left(h^{2}+k^{2}+l^{2}\right)} \cos \theta}$
This problem could be performed more easily if we had noticed that it simplifies to, $\lambda=\sqrt{A} \sin \theta$. We then obtain the solution directly as, $\frac{\mathrm{d} \lambda}{\mathrm{d} \theta}=\sqrt{A} \cos \theta$, which can be solved using eqn. (14.6).

- This worked example assumes that we performed the differentiation with θ in radians.

