Differentiation IV
 The product rule and the quotient rule

Answers to additional problems

16.1 The Planck function, $\frac{G}{T}$

This is a fraction and therefore a quotient.
16.2 The rate of reaction follows an equation of the type

$$
\text { rate }=k c
$$

during a first-order reaction. Here c is a concentration, k is the rate constant, and t is the time.
The two terms are multiplied together, so a product.
16.3 The conductivity λ of an ion through a solution is a function of the mobility μ and the ion charge z,

$$
\begin{equation*}
\lambda=z F \mu \tag{1}
\end{equation*}
$$

Three terms are multiplied together, so a product.
16.4 Rewriting the expression slightly, $\phi_{\mathrm{atm}}=\frac{Z_{i} \exp (-k r)}{r}-\frac{Z_{i}}{r}$ where $k=1 / r_{\mathrm{D}}$. The derivative of the second term, $-Z_{\mathrm{i}} / r$ is simply Z_{i} / r^{2}. Concerning the main function,

$$
\begin{array}{ll}
\text { If } u=Z_{\mathrm{i}} \exp (-k r) & \text { then } \mathrm{d} u / \mathrm{d} x=-k Z_{\mathrm{i}} \exp (-k r) \\
\text { If } & v=r
\end{array} \text { then } \mathrm{d} v / \mathrm{d} x=1
$$

Inserting terms into the quotient rule yields,

$$
\begin{array}{ll}
\qquad \frac{\mathrm{d} \phi_{\mathrm{atm}}}{\mathrm{~d} r}=\frac{r\left[-k Z_{i} \exp (-k r)\right]-Z_{i} \exp (-k r)[1]}{r^{2}}+\frac{Z_{i}}{r^{2}} \\
\text { Factorizing yields, } & \frac{\mathrm{d} \phi_{\mathrm{atm}}}{\mathrm{~d} r}=\frac{-Z_{i}\{k r+1\} \exp (-k r)}{r^{2}}+\frac{Z_{i}}{r^{2}} \\
\text { Inserting for } k \text { yields, } & \frac{\mathrm{d} \phi_{\mathrm{atm}}}{\mathrm{~d} r}=\frac{-Z_{i}\left\{\left(r / r_{\mathrm{D}}\right)+1\right\} \exp \left(r / r_{\mathrm{D}}\right)}{r^{2}}+\frac{Z_{i}}{r^{2}}
\end{array}
$$

16.5 1. If $u=\sin 2 x$ then $\mathrm{d} u / \mathrm{d} x=2 \cos 2 x$

If $v=x^{3}$ then $\mathrm{d} u / \mathrm{d} x=3 x^{2}$
Inserting terms, $\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{x^{3}[2 \cos 2 x]-\sin 2 x\left[3 x^{2}\right]}{\left(x^{3}\right)^{2}}$
Factorizing yields, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\not x^{\not x}\{2 x \cos 2 x-3 \sin 2 x\}}{x^{6}}=\frac{2 x \cos 2 x-3 \sin 2 x}{x^{4}}$
2. If $u=\sin 2 x$ then $\mathrm{d} u / \mathrm{d} x=2 \cos 2 x$

If $v=x^{-3}$ then $\mathrm{d} v / \mathrm{d} x=-3 x^{-4}$
Inserting terms, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin 2 x\left[-3 x^{-4}\right]+x^{-3}[2 \cos 2 x]=-\frac{3 \sin 2 x}{x^{4}}+\frac{2 \cos 2 x}{x^{3}}$

We will need the chain rule to obtain the derivative of v.

The N term on the far right-hand side comes from $N^{-3 / 2}=N^{-1} \times N^{-1 / 2}$.

In the second term, top and bottom are multiplied by x,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3 \sin 2 x}{x^{4}}+\frac{2 x \cos 2 x}{x^{4}}
$$

and placing over a common denominator of $x^{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{2 x \cos 2 x-3 \sin 2 x}{x^{4}}$
3. The two expressions in parts (1) and (2) are the same.

1. We obtain the derivative of $\exp ((a+b) x)$ straightforwardly using eqn. (14.1).

We say $\frac{\mathrm{d} y}{\mathrm{~d} x}=(a+b) \exp ((a+b) x)$
2. We require the product rule to differentiate $y=\exp (a x) \exp (b x)$,

$$
\begin{aligned}
& \text { If } u=\exp (a x) \quad \text { then } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=a \exp (a x) \\
& \text { If } v=\exp (b x) \quad \text { then } \quad \frac{\mathrm{d} v}{\mathrm{~d} x}=b \exp (b x)
\end{aligned}
$$

Inserting terms into eqn. (16.1) yields,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\exp (a x)[b \exp (b x)]+\exp (b x)[a \exp (a x)]
$$

Factorizing yields, $(a+b)\{\exp (a x) \exp (b x)\}$
Equation (9.4) tells us that, $\exp (a x) \exp (b x)=\exp ((a+b) x)$. Substituting for $\exp ((a+b) x)$ in (1) yields (2).

So the results are the same.
16.7 The problem is a quotient.

$$
\begin{aligned}
& \text { If } u=4 \xi^{2} \text { then } d u / d \xi=8 \xi \\
& \text { If } v=1-\xi^{2} \text { then } \mathrm{d} v / \mathrm{d} \xi=-2 \xi
\end{aligned}
$$

Inserting terms, $\frac{\mathrm{d} K}{\mathrm{~d} \xi}=\frac{\left(1-\xi^{2}\right)[8 \xi]-4 \xi^{2}[-2 \xi]}{\left(1-\xi^{2}\right)^{2}}$
Multiplying out the brackets, $\frac{\mathrm{d} K}{\mathrm{~d} \xi}=\frac{8 \xi-\not \subset \xi^{3}+\not \subset \xi^{3}}{\left(1-\xi^{2}\right)^{2}}$
So $\frac{\mathrm{d} K}{\mathrm{~d} \xi}=\frac{8 \xi}{\left(1-\xi^{2}\right)^{2}}$
16.8 The problem is a product.

If $u=A N^{-1 / 2} \quad$ then $\frac{\mathrm{d} u}{\mathrm{~d} N}=\frac{1}{2} A N^{-3 / 2}=-\frac{A N^{-1 / 2}}{2} \quad$ where $A=\left(\frac{2}{\pi}\right)^{1 / 2}$
if $\quad v=\exp \left(B N^{-1}\right) \quad$ then $\quad \frac{\mathrm{d} v}{\mathrm{~d} N}=-B N^{-2} \exp \left(B N^{-1}\right) \quad$ where $B=-\frac{n^{2}}{2}$
Inserting terms,

$$
\frac{\mathrm{d} P}{\mathrm{~d} N}=A N^{-1 / 2}\left[-B N^{-2} \exp \left(B N^{-1}\right)\right]+\exp \left(B N^{-1}\right)\left[-\frac{A N^{-3 / 2}}{2}\right]
$$

Factorizing yields, $\quad \frac{\mathrm{d} P}{\mathrm{~d} N}=A N^{-1 / 2} \exp \left(B N^{-1}\right)\left\{\left[-B N^{-2}\right]-\left[\frac{N^{-1}}{2}\right]\right\}$
Re-inserting A and B terms,

$$
\begin{aligned}
& \qquad \frac{\mathrm{d} P}{\mathrm{~d} N}=\left(\frac{2}{\pi}\right)^{1 / 2} N^{-1 / 2}\left\{\left[-\left(-\frac{n^{2}}{2}\right) N^{-2}\right]-\left[\frac{N^{-1}}{2}\right]\right\} \exp \left(-\frac{n^{2}}{2} N^{-1}\right) \\
& \text { Finally, a little tidying, } \frac{\mathrm{d} P}{\mathrm{~d} N}=\left(\frac{2}{\pi N}\right)^{1 / 2}\left\{\left[\frac{n^{2}}{2 N^{2}}\right]-\left[\frac{1}{2 N}\right]\right\} \exp \left(-\frac{n^{2}}{2 N}\right)
\end{aligned}
$$

16.9 Here, $y=\frac{\sin \theta}{\cos \theta}$ which is a quotient,

If $u=\sin \theta$ then $\frac{\mathrm{d} u}{\mathrm{~d} \theta}=\cos \theta$

$$
\text { If } \quad v=\cos \theta \quad \text { then } \quad \frac{\mathrm{d} v}{\mathrm{~d} \theta}=-\sin \theta
$$

Inserting terms into the quotient rule yields,

$$
\frac{\mathrm{d}(\tan \theta)}{\mathrm{d} \theta}=\frac{\cos \theta[\cos \theta]-\sin \theta[\sin \theta]}{(\cos \theta)^{2}}=\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{(\cos \theta)^{2}+(\sin \theta)^{2}}{(\cos \theta)^{2}}
$$

We can simplify this expression further because the top line is eqn. (11.13). $\sin ^{2} \theta+\cos ^{2} \theta$ $=1$ so,

$$
\frac{\mathrm{d}(\tan \theta)}{\mathrm{d} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta
$$

16.10 This problem is a product. For the purpose of this calculation, the central term $\exp \left(\frac{\Delta S^{\ddagger}}{R}\right)$ can be regarded as a constant, which we will call c.

$$
\begin{array}{lll}
\text { If } \quad u=\frac{k_{\mathrm{B}} T c}{h} & \text { then } & \frac{\mathrm{d} u}{\mathrm{~d} T}=\frac{k_{\mathrm{B}} c}{h} \\
\text { If } & v=\exp \left(-\frac{\Delta H^{\hbar}}{R} T^{-1}\right) & \text { then } \\
\frac{\mathrm{d} v}{\mathrm{~d} T}=\frac{\Delta H^{\xi}}{R} T^{-2} \exp \left(-\frac{\Delta H^{\hbar}}{R} T^{-1}\right)
\end{array}
$$

We need the chain rule to obtain the derivative of v.

Inserting terms into the product rule,

Factorizing, $\quad \frac{\mathrm{d} k}{\mathrm{~d} T}=\left(\frac{k_{\mathrm{B}} \mathrm{c}}{\mathrm{h}}\right) \exp \left(-\frac{\Delta H^{*}}{R} T^{-1}\right)\left\{\left[T\left(\frac{\Delta H^{*}}{R} T^{-2}\right)\right]+1\right\}$
Tidying yields, $\quad \frac{\mathrm{d} k}{\mathrm{~d} T}=\left\{1+\frac{\nmid \Delta H^{*}}{R T^{2}}\right\}\left(\frac{k_{\mathrm{B}} \mathrm{c}}{\mathrm{h}}\right) \exp \left(-\frac{\Delta H^{*}}{R T}\right)$
Further cancelling has simplified the T term in the final bracket.

Finally, re-substituting for $c, \frac{\mathrm{~d} k}{\mathrm{~d} T}=\left\{1+\frac{\Delta H^{*}}{R T}\right\}\left(\frac{k_{\mathrm{B}}}{h}\right) \exp \left(-\frac{\Delta S^{\ddagger}}{R}\right) \exp \left(-\frac{\Delta H^{*}}{R T}\right)$

