Differentiation VI
 Partial differentiation

18

Answers to additional problems

18.1 Total differential

$$
\mathrm{d} V=\left(\frac{\partial V}{\partial T}\right) \quad \mathrm{d} T+\left(\frac{\partial V}{\partial p}\right) \mathrm{d} p+\left(\frac{\partial V}{\partial n}\right) \mathrm{d} n
$$

Equation from the question $\begin{array}{ccccccc}\mathrm{d} V & \alpha V & \mathrm{~d} T & -\kappa V & \mathrm{~d} p & +V_{\mathrm{m}} & \mathrm{d} n \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7}\end{array}$
Comparing the 2 terms $\quad \alpha V=\left(\frac{\partial V}{\partial T}\right)$ thermal expansivity $\quad \alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)$
Comparing the 4 terms $-\kappa V=\left(\frac{\partial V}{\partial p}\right)$ isothermal compressibility, $\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)$
Comparing the 6 terms $\quad V_{\mathrm{m}}=\left(\frac{\partial V}{\partial n}\right)$ molar volume

- In this example subscripts have been omitted to enhance clarity.
18.2 Inserting terms into the template expression in eqn. (18.4) yields,

$$
\mathrm{d} E=\left(\frac{\partial E}{\partial V}\right)_{I, t} \mathrm{~d} V+\left(\frac{\partial E}{\partial I}\right)_{V, t} \mathrm{~d} I+\left(\frac{\partial E}{\partial t}\right)_{V, I} \mathrm{~d} t
$$

18.3 From Worked Example 18.6,

$$
\left(\frac{\partial G}{\partial p}\right)_{T}=V \text { and }\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

We differentiate the first expression by T

$$
\left(\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial p}\right)_{T}\right)_{p}=\left(\frac{\partial V}{\partial T}\right)_{p}
$$

We differentiate the second expression by T

$$
\left(\frac{\partial}{\partial p}\left(\frac{\partial G}{\partial T}\right)_{p}\right)_{T}=-\left(\frac{\partial S}{\partial p}\right)_{T}
$$

Euler reciprocity lets us equate these two equations

$$
\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T}
$$

18.4 Differentiating the equation with respect to T at constant volume, V,

$$
\left(\frac{\partial H}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\frac{\partial p}{\partial T}\right)_{V} V
$$

The $\partial U / \partial T$ term is the heat capacity at constant volume C_{v}. The equation becomes,

$$
\left(\frac{\partial H}{\partial T}\right)_{V}=C_{V}+\left(\frac{\partial p}{\partial T}\right)_{V} V .
$$

We can go further and say the derivative $(\partial p / \partial T)_{V}$ is the ratio of thermal expansivity α and isothermal compressibility κ (see Self test 18.4.1).

$$
\text { Therefore, }\left(\frac{\partial H}{\partial T}\right)_{V}=C_{V^{+}}\left(\frac{\alpha}{\kappa}\right) V
$$

18.5 We start by multiplying the Clausius equality by 1 from the 'dodge' $1=(\partial T / \partial T)$,

$$
\mathrm{d} S=\frac{\mathrm{d} q}{T} \times \frac{\partial T}{\partial T}
$$

We can safely substitute H for q if we do no expansion work. We then rearrange slightly,

$$
\mathrm{d} S=\left(\frac{\partial H}{\partial T}\right) \times \frac{1}{T} \mathrm{~d} T
$$

where the term in brackets is simply C_{p}.
We therefore obtain the desired equation, $\mathrm{d} S=C_{p} / T \mathrm{~d} T$.

18.6 Strategy

1. We rearrange the van der Waals equation to make T the subject.
2. We differentiate T with respect to V as, $(\partial T / \partial V)_{n}$.
3. We then differentiate this function with respect to p calling it $\left(\partial^{2} T / \partial p \partial V\right)_{n}$.
4. We differentiate T with respect to p as $(\partial T / \partial p)_{n}$
5. We then differentiate this function with respect to V calling it $\left(\partial^{2} p / \partial V \partial p\right)$.
6. We compare the two results in parts 3 and 5 .

Solution

1. $T=\frac{1}{n R}\left(p+a n^{2} V^{-2}\right)(V-n b)$
2. $\frac{\partial T}{\partial V}=\frac{1}{n R}\left(\left(p+\frac{a n^{2}}{V^{2}}\right) \times 1+(V-n b) \times-\frac{2 a n^{2}}{V^{3}}\right)$
3. $\frac{\partial^{2} T}{\partial p \partial V}=\frac{1}{n R} \quad$ Because the only term which includes p is $\quad \frac{1}{n R} \times p$
4. $\frac{\partial T}{\partial p}=\frac{1}{n R}(V-n b)$
5. $\frac{\partial^{2} T}{\partial V \partial p}=\frac{1}{n R}$
6. The answers in parts 3 and 5 are clearly the same.
18.7

$$
\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{~d} V=T\left(\left(\frac{\partial S}{\partial T}\right)_{V} \mathrm{~d} T+\left(\frac{\partial S}{\partial V}\right)_{T} \mathrm{~d} V\right)-p \mathrm{~d} V
$$

Total differential of $\mathrm{d} U$ Total differential of $\mathrm{d} S$
We then simplify by saying $\mathrm{d} V=0$. Therefore,

$$
\left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{~d} T=T\left(\frac{\partial S}{\partial T}\right)_{V} \mathrm{~d} T
$$

Dividing both sides by $\mathrm{d} T$ yields, $\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}$

1. $\frac{\partial I}{\partial c}=\frac{0.62 n F A D^{2 / 3} \omega^{1 / 2}}{\sqrt[6]{v}}$

$$
\frac{\partial^{2} I}{\partial \omega \partial c}=\frac{1}{2} \times \frac{0.62 n F A D^{2 / 3} \omega^{-1 / 2}}{\sqrt[6]{v}}=\frac{0.62 n F A D^{2 / 3}}{2 \sqrt{\omega} \sqrt[6]{v}}
$$

$$
\text { so } \quad \frac{\partial^{2} I}{\partial \omega \partial c}=\frac{0.31 n F A D^{2 / 3}}{\sqrt{\omega} \sqrt[6]{v}}
$$

2. $\frac{\partial I}{\partial \omega}=\frac{1}{2} \times \frac{0.62 n F A c D^{2 / 3} \omega^{-1 / 2}}{\sqrt[6]{v}}=\frac{0.62 n F A c D^{2 / 3}}{2 \sqrt{\omega} \sqrt[6]{v}}$
so $\quad \frac{\partial^{2} I}{\partial c \partial \omega}=\frac{0.31 n F A D^{2 / 3}}{\sqrt{\omega} \sqrt[6]{v}}$
We see how, $\frac{\partial^{2} I}{\partial c \partial \omega}=\frac{\partial^{2} I}{\partial \omega \partial c}$
18.9 We note how the exponential's argument $\mathrm{i} \phi$ is complex as defined in Chapter 25.

Next, we calculate the individual derivatives found in the expression for Λ^{2},

$$
\begin{aligned}
& \frac{\partial \psi}{\partial \theta}=N \cos \theta \mathrm{e}^{\mathrm{i} \phi} \quad \frac{\partial^{2} \psi}{\partial \theta^{2}}=-N \sin \theta \mathrm{e}^{\mathrm{i} \phi} \\
& \frac{\partial \psi}{\partial \phi}=\mathrm{i} N \sin \theta \mathrm{e}^{\mathrm{i} \phi} \quad \frac{\partial^{2} \psi}{\partial \phi^{2}}=\mathrm{i}^{2} N \sin \theta \mathrm{e}^{\mathrm{i} \mathrm{\phi} \phi}=-N \sin \theta \mathrm{e}^{\mathrm{i} \phi}
\end{aligned}
$$

We then substitute for these values,

$$
\begin{aligned}
& \Lambda^{2} \psi=\frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial \psi}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} \\
& \Lambda^{2} \psi=-N \sin \theta \mathrm{e}^{\mathrm{i} \phi}+\frac{\cos \theta}{\sin \theta} \times N \cos \theta \mathrm{e}^{\mathrm{i} \phi}+\frac{1}{\sin ^{2} \theta} \times-N \sin \theta \mathrm{e}^{\mathrm{i} \phi} \\
& \Lambda^{2} \psi=\frac{N \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}\left(-\sin ^{2} \theta+\cos ^{2} \theta-1\right)
\end{aligned}
$$

Simplifying this expression and using the trigonometric identity, $\sin ^{2} \theta+\cos ^{2} \theta=1$ (see Chapter 11),

$$
\Lambda^{2} \psi=\frac{N \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}\left(-\sin ^{2} \theta+\cos ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right)
$$

which simplifies to give us,

$$
\Lambda^{2} \psi=\frac{-2 N \sin ^{2} \theta \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}=-2 N \sin \theta \mathrm{e}^{\mathrm{i} \phi}
$$

We can write this last expression as, $\Lambda^{2} \psi=-2 \psi=-l \times(l+1) \psi$.
Therefore, the wavefunction is indeed a spherical harmonic with $l=1$ (it is actually $\left.Y_{l, m_{l}}=Y_{1,1}\right)$.
18.10 As in Additional Problem 18.9, we first note that the argument of the exponential $\mathrm{i} \phi$ is complex as defined in Chapter 25.

We calculate the individual derivatives found in the expression for Λ^{2},

$$
\begin{aligned}
& \frac{\partial \psi}{\partial \theta}=\left(\cos ^{2} \theta-\sin ^{2} \theta\right) N \mathrm{e}^{\mathrm{i} \phi} \\
& \frac{\partial^{2} \psi}{\partial \theta^{2}}=(-2 \sin \theta \cos \theta-2 \cos \theta \sin \theta) N \mathrm{e}^{\mathrm{i} \phi}=-4 \sin \theta \cos \theta N \mathrm{e}^{\mathrm{i} \phi} \\
& \frac{\partial \psi}{\partial \phi}=\mathrm{i} N \sin \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi} \\
& \frac{\partial^{2} \psi}{\partial \phi^{2}}=\mathrm{i}^{2} N \sin \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi}=-N \sin \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi}
\end{aligned}
$$

then, we substitute for these values,

$$
\begin{aligned}
& \Lambda^{2} \psi=\frac{\partial^{2} \psi}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial \psi}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} \\
& \Lambda^{2} \psi=-4 \sin \theta \cos \theta N \mathrm{e}^{i \phi}+\frac{\cos \theta}{\sin \theta} \times\left(\cos ^{2} \theta-\sin ^{2} \theta\right) N \mathrm{e}^{\mathrm{i} \phi}+\frac{1}{\sin ^{2} \theta} \times-N \sin \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi}
\end{aligned}
$$

Simplifying this expression gives,

$$
\Lambda^{2} \psi=\frac{N \cos \theta \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}\left(-4 \sin ^{2} \theta+\cos ^{2} \theta-\sin ^{2} \theta-1\right)
$$

Using the trigonometric identity, $\sin ^{2} \theta+\cos ^{2} \theta=1$ (see Chapter 11),

$$
\Lambda^{2} \psi=\frac{N \cos \theta \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}\left(-5 \sin ^{2} \theta+\cos ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\right)
$$

which simplifies to,

$$
\Lambda^{2} \psi=\frac{-6 N \sin ^{2} \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi}}{\sin \theta}=-6 N \sin \theta \cos \theta \mathrm{e}^{\mathrm{i} \phi}
$$

This can be written as, $\Lambda^{2} \psi=-6 \psi=-2 \times(2+1) \psi$.
The wavefunction is therefore a spherical harmonic with $l=2$. (It is actually $Y_{l, m_{l}}=Y_{2,1}$.)
An alternative approach would have us use some of the trigonometric relationships found in Chapter 11. We notice that, $\psi=\frac{N}{2} \sin 2 \theta \mathrm{e}^{\mathrm{i} \phi}$,

$$
\begin{aligned}
& \frac{\partial \psi}{\partial \theta}=N \cos 2 \theta \mathrm{e}^{\mathrm{i} \phi}=2 \frac{\cos 2 \theta}{\sin 2 \theta} \psi \\
& \frac{\partial^{2} \psi}{\partial \theta^{2}}=-2 N \sin 2 \theta \mathrm{e}^{\mathrm{i} \phi}=-4 \psi \\
& \frac{\partial^{2} \psi}{\partial \phi^{2}}=i^{2} \frac{N}{2} \sin 2 \theta \mathrm{e}^{\mathrm{i} \phi}=-\psi
\end{aligned}
$$

then, we substitute for these values,

$$
\Lambda^{2} \psi=-4 \psi+2 \frac{\cos \theta}{\sin \theta} \frac{\cos 2 \theta}{\sin 2 \theta} \psi+\frac{1}{\sin ^{2} \theta} \times-\psi
$$

Substituting for $\sin 2 \theta$ and $\cos 2 \theta$ gives,

$$
\Lambda^{2} \psi=\psi\left(-4+\frac{2 \cos \theta\left(2 \cos ^{2} \theta-1\right)}{2 \sin ^{2} \theta \cos \theta}-\frac{1}{\sin ^{2} \theta}\right)
$$

which we can simplify further as,

$$
\Lambda^{2} \psi=\frac{\psi}{\sin ^{2} \theta}\left(-4 \sin ^{2} \theta+2 \cos ^{2} \theta-2\right)
$$

Using the trigonometric identity, $\sin ^{2} \theta+\cos ^{2} \theta=1$,

$$
\Lambda^{2} \psi=\frac{\psi}{\sin ^{2} \theta}\left(-4 \sin ^{2} \theta+2 \cos ^{2} \theta-2\left(\sin ^{2} \theta+\cos ^{2}\right)\right)
$$

which simplifies to

$$
\Lambda^{2} \psi=\frac{\psi}{\sin ^{2} \theta} \times-6 \sin ^{2} \theta
$$

and hence,

$$
\Lambda^{2} \psi=-6 \psi
$$

