Integration I
 Reversing the process of differentiation

Answers to additional problems

19.1 We first rewrite the equation in index form, $S=C_{p} \int T^{-1} \mathrm{~d} T$ Equation (19.5) gives us the integral of this polynomial, so

$$
S=C_{p} \ln T+c
$$

where c is the constant of integration.
19.2 We imply a derivative when we talk about a 'gradient'. Stated otherwise, we start with an expression of the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{3}$.
The original function must therefore have been $1 / 4 x^{4}+c$.
19.3 We again write the expression as an integration problem, $\Delta H=\int C_{p} \mathrm{~d} T$

Substituting for C_{p} yields, $\quad \Delta H=\int a T^{3} \mathrm{~d} T$
We integrate, $\quad \Delta \mathrm{H}=1 / 4 a T^{4}+c$
where c is a constant of integration.
19.4 We start by rewriting the first term in index form as, $1.5 / x^{4}=1.5 x^{-4}$. We then recast the question into an integration problem, saying

$$
y=\int 1.5 x^{-4}+5 \sin 3 x \mathrm{~d} x
$$

We can now integrate using eqns (19.1) and (19.3),
so $\quad y=\frac{1.5 x^{-3}}{-3}-\frac{5}{3} \cos 3 x+x$
which we rewrite more tidily as $y=-\frac{1}{2 x^{3}}-\frac{5}{3} \cos 3 x+c$
19.5 We first rewrite in index form, $\quad U=-A r^{-6}$

We write as an integration problem, integral $=-A \int r^{-6} \mathrm{~d} r$
so integral $=-A \times\left(\frac{r^{-5}}{-5}\right)+c$
where c is a constant of integration. The minus signs cancel. Then, with slight tidying,
integral $=\frac{A}{5 r^{5}}+c$
19.6 We write the integral as, $y=\int x^{3}+x^{2}-1 \mathrm{~d} x$
then integrate as, $\quad y=\frac{x^{4}}{4}+\frac{x^{3}}{3}-x+c \quad$ where c is a constant of integration.
Inserting known data, $\quad 20=\frac{2^{4}}{4}+\frac{2^{3}}{3}-2+c$
so
$20=4+\frac{8}{3}-2+c$
we calculate, $\quad c=\frac{46}{3}$
to obtain,

$$
y=\frac{x^{4}}{4}+\frac{x^{3}}{3}-x+\frac{46}{3}
$$

19.7 The term $n R T$ is a constant so we write it outside the integration sign. We then write the appropriate integration symbolism, and say,

$$
\int 1 \mathrm{~d} G=n R T \int \frac{1}{p} \mathrm{~d} p
$$

Integration with eqn. (19.5) gives,

$$
G=n R T \ln p+c \quad \text { where } c \text { is a constant of integration. }
$$

- The 1 on the left-hand side during the integration is a mathematical dodge that allows us to integrate, see p. 400.
19.8 We rewrite the concentration term in index form, $\int[\mathrm{A}]^{-2} \mathrm{~d}[\mathrm{~A}]=-k \int \mathrm{~d} t$ then integrate,

$$
-[\mathrm{A}]^{-1}=-k t+c
$$

where c is a constant of integration.
Multiplying throughout by -1 and tidying yields, $\quad 1 /[\mathrm{A}]=k t-c$
19.9 Remember that $\quad 1 /[\mathrm{A}]^{3}=[\mathrm{A}]^{-3}$

Integrating yields, $\quad-1 / 2[\mathrm{~A}]^{-2}=-k t+c$
where c is a Tidying and multiplying throughout by -1 yields, $\frac{1}{2[\mathrm{~A}]^{2}}=k t-c$
19.10 1. The gradient, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}+\exp (2 x)$.

We obtain the equation of the line by integration.
We first write the equation as an integration problem, $y=\int \frac{1}{x}+\exp (2 x) \mathrm{d} x$ then integrate term by term,

$$
y=\ln x+1 / 2 \exp (2 x)+c
$$

where c is a constant of integration.
2. We then insert the known data,

$$
\begin{aligned}
& 202=\ln 3+1 / 2 \exp (2 \times 3)+c \\
& 202=1.10+(1 / 2 \times 403.4)+c
\end{aligned}
$$

$$
\text { and } \quad c=-0.8
$$

$$
\text { The full equation is, } \quad y=\ln x+1 / 2 \exp (2 x)-0.8
$$

