Integration II

Separating the variables and integrating with limits

۲

Answers to additional problems

We first separate the variables, $\int_{G_1/T_1}^{G_2/T_2} 1 \times \partial(G/T) = -H \int_{T_1}^{T_2} \frac{1}{T^2} \partial T$ 20.1

We obtain,

We then insert the limits,

We often call this last expression the Gibbs-Helmholtz equation and then express it in a slightly different form, as $\frac{\Delta G_2}{T_2} - \frac{\Delta G_1}{T_1} = \Delta H \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$

 $\frac{G_2}{T_2} - \frac{G_1}{T_1} = H\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

 $\left[\frac{G}{T}\right]_{C_1/T_2}^{G_2/T_2} = +H\left[\frac{1}{T}\right]_{T_1}^{T_2}$

20.2 First we rewrite the integral,
$$w = -\int_{V_{initial}}^{V_{initial}} p_{ext} dV$$

Integrating yields, $w = -p_{ext} [V]_{V_{initial}}^{V_{initial}}$

Inserting the variables yields,

 $w = -p_{\text{ext}}(V_{\text{final}} - V_{\text{initial}})$

۲

 $w = -p_{\text{ext}} \Delta V$

- We first separate the variables, $I \times dt = dQ$ 20.3 Writing the equation as an integration problem, $\int I dt = \int 1 dQ$ Integrating, It = Q + c
- $\frac{1}{1} \times d[A] = -k [A]^2 dt$ 20.4 We first separate the variables, $\frac{1}{\left[A\right]^2} d[A] = -k dt$ then rearrange,

We then write as an integration problem, $\int_{[A]_{t}}^{[A]_{t}} \frac{1}{[A]^{2}} d[A] = \int_{0}^{t} -k dt$ $\left[-\frac{1}{[A]}\right]_{[A]_{t}}^{[A]_{t}} = -k\left[t\right]_{0}^{t}$

Integration yields,

- $-\frac{1}{[A]_t} -\frac{1}{[A]_0} = -k(t-0)$ Substituting in
- $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$ Simplifying

The –H terms has been placed outside the integral because it is a constant. This is a a good assumption provided the temperature range is limited.

()

۲

20: Integration II

20.5

20.6

20.7

20.8

Separating the variables, a dt = dv

Writing the problem as an integration, $\int_{0}^{t} a dt = \int_{v}^{v} 1 dv$

۲

We perform the integration, $[at]_{0}^{t} = [v]_{0}^{v}$

We insert the variables,
$$[at - a \times 0] = [v - u]$$

And finally, we tidy up,

We usually express this equation is,

v = u + at or $a = \frac{v - u}{t}$

We position the factors of 5^{1/3} and 3/4 outside the bracket because they are constants.

()

We rewrite the expression, recalling from Chapter 9 how we can express a third root as a power of $\frac{1}{3}$, $\int_{2}^{4} \left[5^{\frac{1}{3}} x^{\frac{1}{3}} \right] dx$.

at = v - u.

We integrate the expression,

$$5^{\frac{1}{3}} \left[\frac{3}{4}x^{\frac{4}{3}}\right]_{2}^{*} = 5^{\frac{1}{3}} \times \frac{3}{4} \left[x^{\frac{4}{3}}\right]_{2}^{*}$$

 $5^{\frac{1}{3}} \times \frac{3}{4} (4^{\frac{4}{3}} - 2^{\frac{4}{3}})$

We insert the limits,

The respective values are, $5^{\frac{1}{3}} = 1.710$ $4^{\frac{4}{3}} = 6.350$ $2^{\frac{4}{3}} = 2.520$. Therefore, the value of the integral = 1.710×0.75 (6.350 – 2.520) = 4.91. We first rewrite the equation slightly, $\frac{d\mu}{dT} = kT^{\frac{1}{2}}$ $d\mu = kT^{\frac{1}{2}} dT$ and we separate the variables, We write it as an integration problem, $\int 1 d\mu = \int kT^{\frac{1}{2}} dT$ $\mu = \frac{2}{3}kT^{\frac{3}{2}} + c$ We integrate, We insert the 1 as a mathematical dodge thereby clarifying that the $d\mu$ operator is actually working upon something. We separate the variables, $v dt = d \ell$ $\int v \, \mathrm{d}t = \int 1 \, \mathrm{d}\ell$ We write as an integration problem, We integrate the expression, $vt = \ell + c$ $v = \frac{\text{distance covered}}{\text{time elapsed}}$ We can rephrase this equation as, d[A]-_k[A].+

20.9 We first separate the variables,
$$d[A] = -k[A] dt$$

We rearrange, $\frac{1}{[A]} d[A] = -k dt$

 (\mathbf{r})

۲

20: Integration II

3

()

At t = 0, the concentration of A is $[A]_0$, whereas at time t the concentration is $[A]_t$. We then write as an integration problem, $\int_{[A]_0}^{[A]_t} \frac{1}{[A]} d[A] = \int_0^t -k dt$ $\left[\ln[\mathbf{A}]\right]_{[\mathbf{A}]_0}^{[\mathbf{A}]_t} = -k[t]_0^t$ and integrate as, $\ln[A]_t - \ln[A]_0 = -k(t-0)$ which can be written out as $\ln \frac{[A]_t}{[A]_0} = -kt$ and simplified as $\ln[A]_t = -kt + \ln[A]_0$ or or $[A]_t = [A]_0 \exp(-kt)$ $\left[-\frac{1}{4}\cos 4x\right]_{\pi/12}^{\pi/6}$ We integrate the function, 20.10 $\left(-\frac{1}{4}\cos\left(\frac{4\pi}{6}\right)\right) - \left(-\frac{1}{4}\cos\left(\frac{4\pi}{12}\right)\right)$ We insert the limits, For ease, we factorize, taking out the common factor of $-\frac{1}{4}$, and simplify the arguments of $-\frac{1}{4}\left[\cos\left(\frac{2\pi}{3}\right) - \cos\left(\frac{\pi}{3}\right)\right]$ the cosines, 2π rad = 360°, so $\pi/6$ rad = 30°. $-\frac{1}{4}[(-0.5)-(0.5)]$ We insert the limits, we see the value of the integral is, $-\frac{1}{4} \times (-1) = \frac{1}{4}$.

۲

۲

۲