Integration II

Separating the variables and integrating with limits

Answers to additional problems

20.1 We first separate the variables, $\int_{G_{1} / T_{1}}^{G_{2} / T_{2}} 1 \times \partial(G / T)=-H \int_{T_{1}}^{T_{2}} \frac{1}{T^{2}} \partial T$

We obtain,

$$
\left[\frac{G}{T}\right]_{G_{1} / T_{1}}^{G_{2} / T_{2}}=+H\left[\frac{1}{T}\right]_{T_{1}}^{T_{2}}
$$

We then insert the limits,

$$
\frac{G_{2}}{T_{2}}-\frac{G_{1}}{T_{1}}=H\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

The $-H$ terms has been placed outside the integral because it is a constant. This is a a good assumption provided the temperature range is limited.

We often call this last expression the Gibbs-Helmholtz equation and then express it in a slightly different form, as $\frac{\Delta G_{2}}{T_{2}}-\frac{\Delta G_{1}}{T_{1}}=\Delta H\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
20.2 First we rewrite the integral,

$$
w=-\int_{V_{\text {initial }}}^{V_{\text {final }}} p_{\text {ext }} \mathrm{d} V
$$

Integrating yields,
$w=-p_{\text {ext }}[V]_{V_{\text {initial }}}^{V_{\text {fial }}}$

Inserting the variables yields, $\quad w=-p_{\text {ext }}\left(V_{\text {final }}-V_{\text {initial }}\right)$
so $\quad w=-p_{\text {ext }} \Delta V$
20.3 We first separate the variables, $\quad I \times \mathrm{d} t=\mathrm{d} Q$

Writing the equation as an integration problem, $\int I \mathrm{~d} t=\int 1 \mathrm{~d} Q$
Integrating, $I t=Q+c$
20.4 We first separate the variables, $\quad \frac{1}{1} \times \mathrm{d}[\mathrm{A}]=-k[\mathrm{~A}]^{2} \mathrm{~d} t$
then rearrange,

$$
\frac{1}{[\mathrm{~A}]^{2}} \mathrm{~d}[\mathrm{~A}]=-k \mathrm{~d} t
$$

We then write as an integration problem, $\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}} \frac{1}{[\mathrm{~A}]^{2}} \mathrm{~d}[\mathrm{~A}]=\int_{0}^{t}-k \mathrm{~d} t$
Integration yields,

$$
\left[-\frac{1}{[\mathrm{~A}]}\right]_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}}=-k[t]_{0}^{t}
$$

Substituting in

$$
-\frac{1}{[\mathrm{~A}]_{t}}--\frac{1}{[\mathrm{~A}]_{0}}=-k(t-0)
$$

Simplifying

$$
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}}
$$

We position the factors of $5^{1 / 3}$ and $3 / 4$ outside the bracket because they are constants.
20.5

Separating the variables,

$$
a \mathrm{~d} t=\mathrm{d} v
$$

Writing the problem as an integration, $\int_{0}^{t} a \mathrm{~d} t=\int_{u}^{v} 1 \mathrm{~d} v$

We perform the integration, $\quad[a t]_{0}^{t}=[v]_{u}^{v}$
We insert the variables
$[a t-a \times 0]=[v-u]$

And finally, we tidy up,

$$
a t=v-u
$$

We usually express this equation is, $\quad v=u+a t \quad$ or $\quad a=\frac{v-u}{t}$
20.6 We rewrite the expression, recalling from Chapter 9 how we can express a third root as a power of $1 / 3, \int_{2}^{4}\left[5^{1 / 3} x^{1 / 3}\right] \mathrm{d} x$.

We integrate the expression,
$5^{1 / 3}\left[\frac{3}{4} x^{4 / 3}\right]_{2}^{4}=5^{1 / 3} \times \frac{3}{4}\left[x^{4 / 3}\right]_{2}^{4}$

We insert the limits,

$$
5^{1 / 3} \times \frac{3}{4}\left(4^{4 / 3}-2^{4 / 3}\right)
$$

The respective values are, $5^{1 / 3}=1.710 \quad 4^{4 / 3}=6.350 \quad 2^{4 / 3}=2.520$
Therefore, the value of the integral $=1.710 \times 0.75(6.350-2.520)=4.91$.
20.7 We first rewrite the equation slightly, $\frac{\mathrm{d} \mu}{\mathrm{d} T}=k T^{1 / 2}$
and we separate the variables, $\quad \mathrm{d} \mu=k T^{1 / 2} \mathrm{~d} T$

We write it as an integration problem, $\int 1 \mathrm{~d} \mu=\int k T^{1 / 2} \mathrm{~d} T$

We integrate,
$\mu=2 / 3 k T^{3 / 2}+c$

- We insert the 1 as a mathematical dodge thereby clarifying that the $\mathrm{d} \mu$ operator is actually working upon something.
20.8 We separate the variables,
$v \mathrm{~d} t=\mathrm{d} \boldsymbol{\ell}$
We write as an integration problem, $\quad \int v \mathrm{~d} t=\int 1 \mathrm{~d} \boldsymbol{\ell}$
We integrate the expression,
$v t=\boldsymbol{\ell}+c$

We can rephrase this equation as, $\quad v=\frac{\text { distance covered }}{\text { time elapsed }}$
We first separate the variables,

$$
\mathrm{d}[\mathrm{~A}]=-k[\mathrm{~A}] \mathrm{d} t
$$

We rearrange,

At $t=0$, the concentration of A is $[\mathrm{A}]_{0}$, whereas at time t the concentration is $[\mathrm{A}]_{t}$. We
then write as an integration problem, $\int_{[A]_{0}}^{[A]_{t}} \frac{1}{[\mathrm{~A}]} \mathrm{d}[\mathrm{A}]=\int_{0}^{t}-k \mathrm{~d} t$
and integrate as,

$$
[\ln [\mathrm{A}]]_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}}=-k[t]_{0}^{t}
$$

which can be written out as

$$
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0}=-k(t-0)
$$

and simplified as
$\ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-k t$
or
$\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$
or

$$
[\mathrm{A}]_{t}=[\mathrm{A}]_{0} \exp (-k t)
$$

20.10 We integrate the function,

$$
\left[-\frac{1}{4} \cos 4 x\right]_{\pi / 12}^{\pi / 6}
$$

We insert the limits,

$$
\left(-\frac{1}{4} \cos \left(\frac{4 \pi}{6}\right)\right)-\left(-\frac{1}{4} \cos \left(\frac{4 \pi}{12}\right)\right)
$$

For ease, we factorize, taking out the common factor of $-\frac{1}{4}$, and simplify the arguments of the cosines,

$$
-\frac{1}{4}\left[\cos \left(\frac{2 \pi}{3}\right)-\cos \left(\frac{\pi}{3}\right)\right]
$$

$$
2 \pi \mathrm{rad}=360^{\circ} \text {, so } \pi / 6 \mathrm{rad}=30^{\circ} .
$$

We insert the limits,

$$
-\frac{1}{4}[(-0.5)-(0.5)]
$$

we see the value of the integral is, $-\frac{1}{4} \times(-1)=\frac{1}{4}$.

