
Answers to additional problems

22.1 We obtain the entropy using the following integral, ΔS = 
C
T
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Integration yields, ΔS = [91.47 ln T + 7.5×10–2 T ]240
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so ΔS = (91.47 × 0.318) + (7.5 × 10–2 × 90) = 29.13 + 6.75
and ΔS = 35.88 J K–1 mol–1

22.2 Strategy

1. We find out where the two curves intersect.
2. We integrate each curve, using the two points of intersection as the limits.
3. We subtract the lesser area from the greater.

Solution

1. The first curve factorizes to form y = (x2 + 5x + 6) (x – 4) = (x + 2) (x + 3) (x – 4). The 
second curve factorizes to form y = (x + 2) (x – 4) so the two curves intersect at the 
points x = –2 and at x = 4.
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= –122⅔ – (21⅓) = –144 area units.
3. The area of overlap is, 144 – 36 = 108 area units.

• The areas beneath both curves are negative because each lies below the x-axis. 
But negative areas bear no relation to physical fact so from now on we will regard 
both as positive.

22.3 We obtain the area as the integral,
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22.4 V =  x y2
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Integration IV
Integrating areas and volumes,  
and multiple integration
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2 22: Integration IV

Inserting limits yields,  V = × −
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22.5 We equate the two equations to find the coordinates where the two lines overlap. We say, 
x2 = –2x + 8, so 0 = x2 + 2x – 8, so 0 = (x – 2) (x + 4). The two lines intersect at values of  
x = –4 and +2.

The area beneath the parabolic curve = x2
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The area beneath the line, − +
−
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2  = 60 area units.

The area of overlap = 60 – 24 = 36 area units.

22.6  Volume d= ∫ y x2
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22.7 Strategy

There are three separate integrals here, each embedded in the others.
1. As before, we integrate in three stages then multiply together the results of the three 

component answers.
2. We rearrange to equate the integral to 1.

Solution

1. From eqn. (22.3),    
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2. Integration with respect to . The relevant part of the outermost integral is,
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Integrate with respect to θ. Using a standard integral, the relevant part of the middle 

integral is, sin 
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Integrate with respect to r. We need one of the standard integrals in Table 21.1. The 
relevant part of the innermost integral is,
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3. The overall integral is N2 × ¼a0
3  × 2 × 2π = a0

3πN2.
4. We rearrange to make N the subject to ensure the integral in part 3 equals 1, 
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22.8 The respective integral is, 8   d d dxyz x y z
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It does not matter in which order we perform this integral because the functions are not 
interconnected. We will use the order x, then y, and finally z.
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322: Integration IV
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The volume is therefore 5.

22.9 The probability P = 1 since the particle must lie somewhere on the surface of the sphere, 
therefore
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00

2
cos sin   



d d ∫∫

We can separate out the different variables,
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Evaluating the integral,  − − =
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so we can rearrange this expression to find the normalization constant, N =
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4
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22.10 Substituting in for the two wavefunctions,
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Evaluating the integrals,
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Both sin terms equal 0, so we conclude that,
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This value of 0 means they are indeed orthogonal.
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