Matrices II

Symmetry operations and symmetry elements

Answers to additional problems

24.1 In two dimensions, the identity matrix is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

We start by writing a matrix to describe the positions of the four carbons, $\left(\begin{array}{llll}1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2\end{array}\right)$ where these numbers relate straightforwardly to the coordinates of the four carbons. We then multiply together the two matrices, $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{llll}1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2\end{array}\right)=\left(\begin{array}{llll}1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2\end{array}\right)$ That the result is identical to the starting (right-hand side) matrix demonstrates that none of the atoms have moved.

The appropriate matrix is $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
We assemble the coordinates of the atoms within the water molecule into a second matrix, then multiply the two together,

$$
\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{rrr}
-2 & -1 & -2 \\
1 & 2 & 3
\end{array}\right)
$$

The resulting matrix says that all the y-coordinates remain unchanged but the three x coordinates are now on the opposite side of the y-axis.
24.3 The matrix describing a reflection in the x-axis is $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.

To effect this reflection, we multiply this matrix with a second comprising the coordinating of the carbon atoms in cyclopentadiene,

$$
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{rrrrr}
1 & 2 & 2.5 & 3 & 4 \\
2 & 1 & 3 & 1 & 2
\end{array}\right)=\left(\begin{array}{rrrrr}
1 & 2 & 2.5 & 3 & 4 \\
-2 & -1 & -3 & -1 & -2
\end{array}\right)
$$

All the positions along the x-axis remain unchanged while each y-coordinate has been multiplied by -1 . The cyclopentadiene has indeed been reflected using the x-axis as the mirror plane.
24.4 The matrix describing an inversion operation is $i=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$

We multiply this matrix with a second made with the coordinates of ammonia (the nitrogen is in blue),

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{llll}
2 & 1 & 3 & 1 \\
2 & 1 & 2 & 3 \\
2 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
-2 & -1 & -3 & -1 \\
-2 & -1 & -2 & -3 \\
-2 & -1 & -1 & -1
\end{array}\right)
$$

Clearly, all the coordinates have been multiplied by -1 . In other words, the operation turns the molecule upside-down and places it in the opposing quadrant to where it started.

Multiplying the inversion matrix with the coordinate matrix generates the following,

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrrrrr}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)=\left(\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Comparing the coordinates shows that we have a water molecule in each of the same six positions as previously.

$$
\text { In general, the rotation matrix is }\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Inserting values and multiplying this matrix by a matrix comprising the coordinates of the six carbon atoms yields,

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos 60^{\circ} & -\sin 60^{\circ} \\
\sin 60^{\circ} & \cos 60^{\circ}
\end{array}\right)\left(\begin{array}{cccccc}
10 & 5 & -5 & -10 & -5 & 5 \\
0 & 5 \sqrt{3} & 5 \sqrt{3} & 0 & -5 \sqrt{3} & -5 \sqrt{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cccccc}
10 & 5 & -5 & -10 & -5 & 5 \\
0 & 5 \sqrt{3} & 5 \sqrt{3} & 0 & -5 \sqrt{3} & -5 \sqrt{3}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
5 & \frac{5}{2}-\frac{15}{2} & -\frac{5}{2}-\frac{15}{2} & -5 & -\frac{5}{2}+\frac{15}{2} & \frac{5}{2}+\frac{15}{2} \\
5 \sqrt{3} & \frac{5 \sqrt{3}}{2}+\frac{5 \sqrt{3}}{2} & \frac{-5 \sqrt{3}}{2}+\frac{5 \sqrt{3}}{2} & -5 \sqrt{3} & \frac{-5 \sqrt{3}}{2}-\frac{5 \sqrt{3}}{2} & \frac{5 \sqrt{3}}{2}-\frac{5 \sqrt{3}}{2}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
5 & -5 & -10 & -5 & 5 & 10 \\
5 \sqrt{3} & 5 \sqrt{3} & 0 & -5 \sqrt{3} & -5 \sqrt{3} & 0
\end{array}\right)
\end{aligned}
$$

Comparing the coordinates shows the rotation matrix has indeed rotated the benzene molecule, with each carbon moving anticlockwise.
24.7 In two dimensions, the rotation matrix has the form $\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.

The sin and cosine of 45° are both $1 / \sqrt{ } 2$, so the matrix becomes $\frac{1}{1 / \sqrt{2}}\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$
Multiplying this matrix with the coordinates of the atoms yields,

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{llll}
2 & 3 & 3 & 2 \\
1 & 1 & 2 & 2
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
3 & 4 & 5 & 4
\end{array}\right)
$$

24.8 The correct matrix to describe the operation is $C_{2}(y)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
so applying this matrix algebra to the appropriate position matrix yields,
$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)\left(\begin{array}{llll}1 & 1 & 4 & 4 \\ 1 & 3 & 1 & 3 \\ 2 & 2 & 2 & 2\end{array}\right)=\left(\begin{array}{rrrr}-1 & -1 & -4 & -4 \\ 1 & 3 & 1 & 3 \\ -2 & -2 & -2 & -2\end{array}\right)$ Inspection of these coordinates suggests that
after the symmetry the molecule is now behind the $x y$-plane and positioned to the left of the y-axis as drawn here.
$24.9 \quad \mathrm{~S}_{8}=\sigma_{x y} C_{8}$

$$
\begin{aligned}
\mathrm{S}_{8} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\cos 45^{\circ} & -\sin 45^{\circ} & 0 \\
\sin 45^{\circ} & \cos 45^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

$24.10 \quad \mathrm{C}_{12}=\left(\begin{array}{ccc}\cos 30^{\circ} & \sin 30^{\circ} & 0 \\ -\sin 30^{\circ} & \cos 30^{\circ} & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1\end{array}\right) \quad \sigma_{y z}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad i=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$

$$
\text { Matrix }=i \sigma_{y z} C_{12}
$$

$$
=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
\frac{-\sqrt{3}}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & \frac{-1}{2} & 0 \\
\frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\
0 & 0 & -1
\end{array}\right)
$$

To work out where the coordinates are transformed to,

$$
=\left(\begin{array}{ccc}
\frac{\sqrt{3}}{2} & \frac{-1}{2} & 0 \\
\frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\frac{\sqrt{3} x-y}{2} \\
\frac{-x-\sqrt{3} y}{2} \\
-z
\end{array}\right)
$$

