Complex numbers

Answers to additional problems

25.1
$\mathbf{I}_{x} \mathbf{I}_{y}=\frac{1}{2} \times \frac{1}{2 \mathrm{i}}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=\frac{1}{4 \mathrm{i}}\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
$\mathbf{I}_{y} \mathbf{I}_{x}=\frac{1}{2 \mathrm{i}} \times \frac{1}{2}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\frac{1}{4 \mathrm{i}}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
so

$$
\mathbf{I}_{x} \mathbf{I}_{y}-\mathbf{I}_{y} \mathbf{I}_{x}=\frac{1}{4 \mathrm{i}}\left(\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right)=-\frac{2}{4 \mathrm{i}}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The factor of $2 / 4$ cancels to $1 / 2$. We then manipulate to remove the i from the denominator, saying $i / i=1$,
$\mathbf{I}_{x} \mathbf{I}_{y}-\mathbf{I}_{y} \mathbf{I}_{x}=-\frac{\mathrm{i}}{2 \mathrm{i}^{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)=+\frac{\mathrm{i}}{2}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)=\mathrm{i} \times \mathbf{I}_{z}$
$25.2 \quad \mathbf{I}_{\mathbf{y}} \mathbf{I}_{z}=\frac{1}{4 i}\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right) \quad I_{z} I_{y}=\frac{1}{4 \mathrm{i}}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
so

$$
\mathbf{I}_{y} \mathbf{I}_{z}-\mathbf{I}_{z} \mathbf{I}_{y}=\frac{1}{4 i}\left\{\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}=\frac{1}{4 \mathrm{i}}\left(\begin{array}{rr}
0 & -2 \\
-2 & 0
\end{array}\right)=-\frac{2}{4 \mathrm{i}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Again, we cancel the 2 and 4 to yield $1 / 2$. Manipulation to remove i from the denominator gives,
$\mathbf{I}_{y} \mathbf{I}_{z}-\mathbf{I}_{z} \mathbf{I}_{y}=-\frac{\mathrm{i}}{2 \mathrm{i}^{2}}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\frac{\mathrm{i}}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\mathrm{i} \times I_{x}$
25.3
$\mathbf{I}_{z} \mathbf{I}_{x}-\mathbf{I}_{x} \mathbf{I}_{z}=\frac{1}{4}\left\{\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)-\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right\}=\frac{1}{4}\left(\begin{array}{rr}0 & 2 \\ -2 & 0\end{array}\right)$
Factorizing yields $=\frac{2}{4}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
Again, we can cancel the 2 and the 4 to yield $1 / 2$.
The matrix should remind us of the matrix in the expression for \mathbf{I}_{y}, but with a slightly different factor. But if we multiply by $\mathrm{i} / \mathrm{i}=1$, we generate i times \mathbf{I}_{y},
$\frac{\mathrm{i}}{2 \mathrm{i}}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=\mathrm{i} \times \frac{1}{2 \mathrm{i}}\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=\mathrm{i} \times \mathrm{I}_{y}$

It is incorrect to factor out the i , as $\Psi \Psi^{*}=\mathrm{i}(f+g)$ $(f-g)$ because the two f terms were not originally multiplied by i.
$25.4 \quad \frac{1}{Z_{\text {total }}}=\frac{1}{Z_{c}}+\frac{1}{Z_{R_{1}}}+\frac{1}{Z_{R_{2}}}=\frac{1}{1 / \mathrm{i} \omega C}+\frac{1}{R_{1}}+\frac{1}{R_{2}}$

$$
\frac{1}{Z_{\text {total }}}=\frac{R_{1} R_{2} \mathrm{i} \omega C+\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}
$$

$$
\text { so } \quad Z_{\text {total }}=\frac{R_{1} R_{2}}{R_{1} R_{2} \mathrm{i} \omega C+\left(R_{1}+R_{2}\right)}
$$

25.5 12-6i.
25.6 A general square $\left(x^{2}+y^{2}\right)$ has roots $(x+y \mathrm{i})(x-y \mathrm{i})$. Therefore, $(3 a+7 \mathrm{bi})(3 a-7 b \mathrm{i})$.
25.7 Using the formula in eqn. (25.11),

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{i} k x}=\cos k x+\mathrm{i} \sin k x \text { and } \\
& \mathrm{e}^{-i k x}=\cos (-k x)+\mathrm{i} \sin (-k x)=\cos (k x)-\mathrm{i} \sin (k x)
\end{aligned}
$$

Therefore, $\psi=A \mathrm{e}^{\mathrm{i} k x}+B \mathrm{e}^{-i k x}$ can be rewritten as,

$$
\begin{aligned}
& \psi=A(\cos k x+\mathrm{i} \sin k x)+B(\cos (k x)-\mathrm{i} \sin (k x)) \\
& \psi=(A+B) \cos k x+(A-B) \mathrm{i} \sin k x
\end{aligned}
$$

25.8 Multiply together the two wavefunctions Ψ and Ψ^{*}, so multiply the brackets in the following problem,

$$
\Psi \Psi *=(f+i g)(f-i g)
$$

We simplify this problem by recognizing how the two brackets resemble the factors of the difference of two squares.

Therefore, the product $\Psi \Psi *=\left(f^{2}-\mathrm{i}^{2} g^{2}\right)=\left(f^{2}+g^{2}\right)$.
25.9 Classically, we know that the kinetic energy E_{KE} is,

$$
\begin{aligned}
& E_{\mathrm{KE}}=1 / 2 m v^{2} \\
& E_{\mathrm{KE}}=\frac{m v^{2}}{2} \times \frac{m}{m}=\frac{(m v)^{2}}{2 m}=\frac{p^{2}}{2 m}
\end{aligned}
$$

Therefore, substituting in for the w momentum operator, we can derive the kinetic energy operator,

$$
\begin{aligned}
E_{\mathrm{KE}} & =\frac{p^{2}}{2 m} \\
E_{\mathrm{KE}} & \left.=\frac{-\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \times-\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}}{2 m} \quad \text { (notice the way that, }-\mathrm{i} \times-\mathrm{i}=-1\right) \\
E_{\mathrm{KE}} & =\frac{(-1)^{2}(\mathrm{i})^{2} \hbar^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)}{2 m} \\
\text { so } E_{\mathrm{KE}} & =\frac{-\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
\end{aligned}
$$

This operator appears in the one-dimensional Schrödinger equation,

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \Psi}{\mathrm{dx}}+V \Psi=E \Psi
$$

25.10 We know from eqn. (25.13) that,

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{i} k x}=(\cos k x+\mathrm{i} \sin k x) \\
& \text { and } \mathrm{e}^{-\mathrm{i} k x}=(\cos (-k x)+\mathrm{i} \sin (-k x))=(\cos k x-\mathrm{i} \sin k x)
\end{aligned}
$$

Therefore, we can rewrite the wavefunction as,

$$
\begin{aligned}
& \psi=A\left(e^{\mathrm{i} k x} \pm e^{-\mathrm{i} k x}\right) \\
& \psi=\mathrm{A}((\cos k x+\mathrm{i} \sin k x) \pm(\cos k x-\mathrm{i} \sin k x)) \\
& \psi=\mathrm{A}((\cos k x \pm \cos k x)+\mathrm{i}(\sin k x \mp \sin k x))
\end{aligned}
$$

There are two possible solutions,

- If we take the top line of the \pm symbols, then $\psi=2 A \cos k x$.
- If we take the lower line of the \pm symbols, then $\psi=2 \mathrm{i} A \sin k x$.
- The next step is to see which of these forms of the wavefunction best satisfies the boundary conditions.

