Vectors

Answers to additional problems

26.1 Inserting terms, $w=\int_{0}^{2}(2 t \hat{\mathbf{1}}+4 \hat{\mathbf{j}}) \cdot(5 \hat{\mathbf{1}}-t \hat{\mathbf{\jmath}}) \mathrm{d} t=\int_{0}^{2} 6 t \mathrm{~d} t=\left[3 t^{2}\right]_{0}^{2}=12 \mathrm{~J}$

Initially, we could have used a slightly different notation,

$$
w=\int_{0}^{2}\binom{2 t}{4} \cdot\binom{5}{-t} \mathrm{~d} t=\int_{0}^{2}(10 t-4 t) \mathrm{d} t
$$

The rest of the solution remains unchanged.
26.2 The cross product of this vector is given from eqn. (26.10).

By definition, $\mathbf{H} \times \mathbf{H}=\left(H_{y} H_{z}-H_{z} H_{y}\right) \hat{\mathbf{1}}-\left(H_{x} H_{z}-H_{z} H_{x}\right) \hat{\mathbf{j}}+\left(H_{x} H_{y}-H_{y} H_{x}\right) \hat{\mathbf{k}}$
Since $H_{y} H_{z}=H_{z} H_{y}, H_{x} H_{z}=H_{z} H_{x}$, and $H_{x} H_{y}=H_{y} H_{x}$, the sum $=0 \hat{\mathbf{1}}-0 \hat{\mathbf{j}}-0 \hat{\mathbf{k}}$.
so there is no vector product of a vector with itself.
Alternatively, we could say, $\mathbf{H} \times \mathbf{H}=|\mathbf{H}| \times|\mathbf{H}| \sin \theta$. As the two vectors are parallel, Remember, $\hat{\mathbf{i}} \cdot \hat{\mathbf{1}}=\hat{\mathbf{\jmath}} \cdot \hat{\mathbf{\jmath}}=0$. $\theta=0$; and $\sin 0=0$. Therefore, $\mathbf{H} \times \mathbf{H}=0$.
26.3 Strategy

1. Force $\mathbf{F}=m a \hat{\mathbf{k}}$, where $\hat{\mathbf{k}}$ is the unit vector pointing vertically upwards.
2. Calculate the displacement vector \mathbf{d} as a simple vector subtraction.
3. Work w is the dot product, $\mathbf{F} \cdot \mathrm{d}$

Solution

1. $\mathbf{F}=m a \hat{\mathbf{k}}=10 \times-9.8 \hat{\mathbf{k}}=-98 \hat{\mathbf{k}} \mathrm{~N}$
2. The displacement vector $\mathbf{d}=(5-2) \hat{\mathbf{\imath}}+(4-3) \hat{\mathbf{j}}+(7-3) \hat{\mathbf{k}}=3 \hat{\mathbf{1}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
3. Work $=\mathbf{F} \cdot \mathbf{d}=(-98 \hat{\mathbf{k}} J) \cdot(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
so work $=(0 \times 3)+(0 \times 1)+(-98 \times 4)=-392 \mathrm{~J}$.
In an alternative notation, $\mathrm{F} \cdot \mathrm{d}=\left(\begin{array}{c}0 \\ 0 \\ -98\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$.
Notice the negative sign verifies that the work is done against gravity because we're lifting the evaporator. Therefore, it requires 392 J of work to move the rotary evaporator.
26.4 We start by remembering from p . 476 that we obtain the determinant of a matrix by reducing it.
so $\quad \operatorname{curl} \mathrm{A}=\hat{\mathbf{i}}\left|\begin{array}{cc}\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{y} & A_{z}\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{cc}\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ A_{x} & A_{z}\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ A_{x} & A_{y}\end{array}\right|$
We then obtain the determinant of each minor,
$\operatorname{curl} \mathrm{A}=\hat{\mathbf{i}}\left(\frac{\partial}{\partial y} A_{z}-\frac{\partial}{\partial z} A_{y}\right)-\hat{\mathbf{j}}\left(\frac{\partial}{\partial x} A_{z}-\frac{\partial}{\partial z} A_{x}\right)+\hat{\mathbf{k}}\left(\frac{\partial}{\partial x} A_{y}-\frac{\partial}{\partial y} A_{x}\right)$

We also call the torque a moment of force. A torque produces (or tends to produce) torsion or rotation. Torque is to angular motion what a force is to linear motion.

Tidying up then yields,

$$
\operatorname{curl} \mathbf{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{k}}
$$

which is eqn. (26.12) if each of the coefficients A_{i} relate to the vector \mathbf{A}.
By definition, power $=\mathbf{F} \bullet \mathbf{v}$
so power $=\left(5 t^{2} \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\right) \cdot\left(t \hat{\mathbf{\imath}}-2 t^{2} \hat{\mathbf{j}}\right)=\binom{5 t^{2}}{2 t} \cdot\binom{t}{-2 t^{2}}\binom{5 t^{3}}{-4 t^{3}}$
so $\quad \mathbf{F} \cdot \mathbf{v}=5 t^{3}-4 t^{3}=t^{3}$.
Alternatively, we could multiply the brackets,
power $=\left(5 t^{2} \hat{\mathbf{i}}\right) \cdot(t \hat{\mathbf{i}})+\left(5 t^{2} \hat{\mathbf{i}}\right) \cdot\left(-2 t^{2} \hat{\mathbf{j}}\right)+(2 t \hat{\mathbf{j}}) \cdot(t \hat{\mathbf{i}})+(2 t \hat{\mathbf{j}}) \cdot\left(-2 t^{2} \hat{\mathbf{j}}\right)$
power $=5 t^{3} \hat{\mathbf{\imath}} \bullet \hat{\mathbf{1}}-10 t^{4} \hat{\mathbf{1}} \bullet \hat{\mathbf{j}}+2 t^{2} \hat{\mathbf{j}} \bullet \hat{\mathbf{i}}-4 t^{3} \hat{\mathbf{j}} \bullet \hat{\mathbf{J}}$
by definition, however, $\hat{\mathbf{1}} \bullet \hat{\mathbf{j}}=\hat{\mathbf{j}} \bullet \hat{\mathbf{1}}=0$, so power $=5 t^{3}-4 t^{3}=t^{3}$.
Notice how this result, being a scalar product, has magnitude but no direction.
From eqn. $(26.11), \mathbf{r} \times \mathbf{F}=(1 \times 4-3 \times 2) \hat{\mathbf{1}}-(2 \times 4-3 \times 3) \hat{\mathbf{j}}+(2 \times 2-1 \times 3) \hat{\mathbf{k}}$
so $\mathbf{r} \times \mathbf{F}=-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$.
In matrix notation, we write, $\mathbf{r} \times \mathrm{F}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) \times\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)$
26.7 From eqn. (26.1), the horizontal component of the vector $=40.2 \cos 40^{\circ}=30.8 \mathrm{~m} \mathrm{~s}^{-1}$

From eqn. (26.2), the vertical component of the vector $\quad=40.2 \sin 40^{\circ}=25.8 \mathrm{~m} \mathrm{~s}^{-1}$

26.8 Strategy

We are being asked to find a directional derivative, so we,

1. Calculate ∇f.
2. Find the derivative in the direction of $\hat{\mathbf{r}}$ using the equation, $\nabla f \cdot \hat{\mathbf{d}}$.
3. Substitute in for (x, y, z).

Solution

1. The three differentials are,

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial x}\right)=\frac{-A x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \\
& \left(\frac{\partial f}{\partial y}\right)=\frac{-A y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \\
& \left(\frac{\partial f}{\partial z}\right)=\frac{-A z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \\
& \nabla f=\frac{-A}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}})
\end{aligned}
$$

2. The gradient of f in the direction of $\hat{\mathbf{d}}$ is given by,

$$
\nabla f \cdot \hat{\mathbf{d}}=\frac{-A}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}) \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) / \sqrt{3}
$$

$$
\begin{aligned}
& =\frac{-A}{\sqrt{3}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\frac{-A(x+y+z)}{\sqrt{3}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

3. At the point, $(1,2,2)$,

$$
\nabla f \cdot \hat{\mathbf{d}}=\frac{-A(1+2+2)}{\sqrt{3}\left(1^{2}+2^{2}+2^{2}\right)^{\frac{3}{2}}}=\frac{-5 A}{27 \sqrt{3}}
$$

(We should note that if we define $\hat{\mathbf{r}}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{J}}+z \hat{\mathbf{k}}$ and let $|\mathbf{r}|=r$, then the gradient can be written as, $\nabla f=\frac{-A \mathbf{r}}{r^{3}}=\frac{-A \hat{\mathbf{r}}}{r^{2}}$, which is a gravitational vector field.)
In fact, we can derive the gradient much easily using the form of the operator ∇ in spherical polar coordinates, $f(r, \theta, \phi)=\frac{A}{r}$
so the gradient of this scalar function is,
$\nabla f=\mathbf{e}_{r} \frac{\partial f}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\mathbf{e}_{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}=\frac{-A \mathbf{e}_{r}}{r^{2}}=\frac{-A \hat{\mathbf{r}}}{r^{2}}$.
26.9 We know from eqn. (26.9) that $\mathbf{l}=\mathbf{r} \times \mathbf{p}=r p \sin \theta \hat{\mathbf{n}}$.

Since the motion is circular, the position and momentum vectors are at right angles, therefore $\sin \theta=1$.
Thus, $|\mathbf{1}|=l=r p$
One form of the kinetic energy is, $E=\frac{p^{2}}{2 \mu}$
Substituting in for the momentum gives, $\quad E=\frac{l^{2}}{2 \mu r^{2}}=\frac{l^{2}}{2 I}$

26.10 Strategy

1. Calculate $\mathbf{b} \times \mathbf{c}$.

Note that the area of the base of the parallelepiped is $|\mathbf{b} \times \mathbf{c}|$.
2. Calculate the dot product $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$

Solution

1. $\mathbf{b} \times \mathbf{c}=\left(\begin{array}{r}2 \\ -4 \\ 1\end{array}\right) \times\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-4 \times 1-1 \times 2 \\ -(2 \times 1-1 \times 3) \\ 2 \times 2-(-4) \times 3\end{array}\right)=\left(\begin{array}{r}-6 \\ 1 \\ 16\end{array}\right)$

Alternatively, we may write this answer as,
$\mathbf{b} \times \mathbf{c}=(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})=(-6 \hat{\mathbf{i}}+\hat{\mathbf{j}}+16 \hat{\mathbf{k}})$
2. $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right) \cdot\left(\begin{array}{r}-6 \\ 1 \\ 16\end{array}\right)=(1 \times-6)+(1 \times 1)+(3 \times 16)=43$

Alternatively, we may write this as,
$\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=(\hat{\mathbf{\imath}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \cdot(-6 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}+16 \hat{\mathbf{k}})=(1 \times-6)+(1 \times 1)+(3 \times 16)=43$
The volume of the parallelepiped is 43 volume units.

