Graphs II

The equation of a straight-line graph

Answers to additional problems

28.1 All we need to decide now is a suitable choice of algebraic symbol. For example, time (in days) can be t and the amount of material can be n. Accordingly, the equation becomes,

Equation of a line

$$
y=m \quad x+c
$$

Our data

$$
n=400 t+312
$$

28.2 Prior knowledge is a constant (average per student) so $c=18$ per cent.

The way the mark depends on attendance is effectively a rate-how often the student attends. Accordingly, $m=1.5$ per cent per lecture.

We next decide suitable choices of algebraic symbol. Let the mark be M and the number of visits to the lectures can be A for attendance. Accordingly, the equation is,
Equation of a line

$$
y=m \quad x+c
$$

Our data

$$
M=1.5 A+18
$$

28.3 To reduce the equation, we divide through by the factor adjacent to y,

$$
\frac{12 y}{12}=\frac{4 x}{12}-\frac{6}{12}
$$

Cancelling yields, $y=1 / 3 x-1 / 2$. We may prefer to write this in decimals instead, as $y=0.33 x-0.5$.
28.4 The gradient is 4.9 so the incomplete equation is, $y=-4.9 x+c$. Inserting the values of x and y for the known point yields, $2=(-4.9 \times-5)+c$.
Therefore, $2=24.5+c$
so $\quad c=-22.5$
The equation of the straight line is, $y=-4.9 x-22.5$.
28.5 Inserting numbers, temperature voltage coefficient $=\frac{(1.433 \mathrm{~V}-1.456) \mathrm{V}}{(56-25)^{\circ} \mathrm{C}}$
so temperature voltage coefficient $=\frac{-0.023 \mathrm{~V}}{31^{\circ} \mathrm{C}}$
and temperature voltage coefficient $=-7.42 \times 10^{-4} \mathrm{~V}^{\circ} \mathrm{C}^{-1}$.
28.6 The gradient is 4.9 so the incomplete equation is, $\quad y=-4.9 \quad x+c$.

Inserting the values of x and y for the known point yields, $2=(-4.9 \times-5)+c$.
Therefore, $2=24.5+c$
so $\quad c=-22.5$
The equation of the straight line is, $y=-4.9 x-22.5$.
28.7 The height of the hill goes up 1 metre for every 20 metres forward. We define the gradient by eqn. (28.2), so the numerator is 1 m and the denominator is 20 m .

The gradient m is $\frac{1 \mathrm{~m}}{20 \mathrm{~m}}=0.05$.
The units on top and bottom are both m so they cancel.

28.8 Strategy

1. We calculate the value of the compound variable, $\varepsilon \subset \boldsymbol{\ell}$.
2. Knowing the value of $\varepsilon \times c \times \ell$, we substitute for $A b s$ and $\varepsilon c \ell$ and solve for k.

Solution

1. $\varepsilon c \ell=30 \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1} \times 0.23 \mathrm{~mol} \mathrm{dm}^{-3} \times 1 \mathrm{~cm}=6.9$.
2. $0.8=6.9+k$ so $k=-6.1$.

28.9 Strategy

1. Insert known data to obtain a gradient, m
2. Knowing the gradient, establish the constant c

Solution

1. Inserting pH and voltmeter reading to obtain $m, \frac{E_{2}-E_{1}}{\mathrm{pH}_{2}-\mathrm{pH}_{1}}$

$$
\text { so } m=\frac{300-400 \mathrm{mV}}{5.5-4.2}=\frac{-100 \mathrm{mV}}{1.3}=-76.9 \mathrm{mV} \text { per } \mathrm{pH} \text { unit }
$$

After dividing throughout by the units of mV , the equation is $E=-76.9 \mathrm{pH}+c$.
2. Inserting data (it does not matter which pair of E and pH we use provided they are related),
$400 \mathrm{mV}=-76.9 \mathrm{mV} \times 4.2+c$,
so $400 \mathrm{mV}=-322.98 \mathrm{mV}+c$, so $c=722.98 \mathrm{mV}$.
The equation of the straight line is, $E=722.98-76.9 \mathrm{pH}$.
28.10 We start by adding a third line to the table, for $1 / p$,

V / m^{3}	0.01	0.02	0.025	0.03	0.04	0.05	0.06	0.07	0.08	0.1	0.2
p / Pa	50	25	20	16.5	12.5	10	8.3	7.2	6.2	5	2.5
$1 / p$	0.02	0.04	0.05	0.06	0.08	0.1	0.12	0.14	0.16	0.2	0.4

We then draw a graph of $1 / p$ (as y) against V (as x).

The gradient $=2$ and the intercept is 0 . The equation of the line is therefore, $1 / p=2 \times V$. The factor of 2 in the gradient tells us the number of moles of gas.

