۲

Graphs II The equation of a straight-line graph

Answers to additional problems All we need to decide now is a suitable choice of algebraic symbol. For example, time (in 28.1 days) can be t and the amount of material can be n. Accordingly, the equation becomes, Equation of a line $y = m \quad x + c$ Our data n = 400 t + 312Prior knowledge is a constant (average per student) so c = 18 per cent. 28.2 The way the mark depends on attendance is effectively a rate-how often the student attends. Accordingly, m = 1.5 per cent per lecture. We next decide suitable choices of algebraic symbol. Let the mark be M and the number of visits to the lectures can be A for attendance. Accordingly, the equation is, Equation of a line y = m x + cOur data M = 1.5 A + 1828.3 To reduce the equation, we divide through by the factor adjacent to y, $\frac{12y}{12} = \frac{4x}{12} - \frac{6}{12}$ Cancelling yields, $y = \frac{1}{3}x - \frac{1}{2}$. We may prefer to write this in decimals instead, as y = 0.33x - 0.5. The gradient is 4.9 so the incomplete equation is, y = -4.9x + c. 28.4 Inserting the values of *x* and *y* for the known point yields, $2 = (-4.9 \times -5) + c$. Therefore, 2 = 24.5 + cc = -22.5so The equation of the straight line is, y = -4.9x - 22.5. Inserting numbers, temperature voltage coefficient = $\frac{(1.433 \text{ V} - 1.456) \text{ V}}{(1.433 \text{ V} - 1.456) \text{ V}}$ 28.5 (56 - 25)°C temperature voltage coefficient = $\frac{-0.023V}{31^{\circ}C}$ so and temperature voltage coefficient = $-7.42 \times 10^{-4} V^{\circ}C^{-1}$. The gradient is 4.9 so the incomplete equation is, y = -4.928.6 x + cInserting the values of x and y for the known point yields, $2 = (-4.9 \times -5) + c$. Therefore, 2 = 24.5 + cc = -22.5so The equation of the straight line is, y = -4.9x - 22.5.

28-Monk-Chap28.indd 1

()

7/29/2021 1:36:08 PM

()

۲

28: Graphs II

2

()

28.7 The height of the hill goes up 1 metre for every 20 metres forward. We define the gradient by eqn. (28.2), so the numerator is 1 m and the denominator is 20 m.

The gradient *m* is $\frac{1m}{20m} = 0.05$.

The units on top and bottom are both m so they cancel.

۲

28.8 Strategy

- **1.** We calculate the value of the compound variable, $\varepsilon c \ell$.
- **2.** Knowing the value of $\varepsilon \times c \times \ell$, we substitute for *Abs* and $\varepsilon c \ell$ and solve for *k*.

Solution

- 1. $\varepsilon c \ell = 30 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1} \times 0.23 \text{ mol} \text{ dm}^{-3} \times 1 \text{ cm} = 6.9.$
- **2.** $0.8 = 6.9 + k \operatorname{so} k = -6.1$.

28.9 Strategy

- 1. Insert known data to obtain a gradient, m
- 2. Knowing the gradient, establish the constant *c*

Solution

1. Inserting pH and voltmeter reading to obtain m, $\frac{E_2 - E_1}{pH_2 - pH_1}$

so
$$m = \frac{300 - 400 \text{mV}}{5.5 - 4.2} = \frac{-100 \text{mV}}{1.3} = -76.9 \text{ mV per pH unit}$$

After dividing throughout by the units of mV, the equation is E = -76.9 pH + c.

2. Inserting data (it does not matter which pair of *E* and pH we use provided they are related),

$$400 \text{ mV} = -76.9 \text{ mV} \times 4.2 + c,$$

so
$$400 \text{ mV} = -322.98 \text{ mV} + c$$
, so $c = 722.98 \text{ mV}$.

The equation of the straight line is, E = 722.98 - 76.9 pH.

28.10 We start by adding a third line to the table, for 1/*p*,

V/m ³	0.01	0.02	0.025	0.03	0.04	0.05	0.06	0.07	0.08	0.1	0.2
p/Pa	50	25	20	16.5	12.5	10	8.3	7.2	6.2	5	2.5
1/p	0.02	0.04	0.05	0.06	0.08	0.1	0.12	0.14	0.16	0.2	0.4

We then draw a graph of 1/p (as y) against V (as x).

The gradient = 2 and the intercept is 0. The equation of the line is therefore, $1/p = 2 \times V$. The factor of 2 in the gradient tells us the number of moles of gas.

28-Monk-Chap28.indd 2

 (\mathbf{r})